L. Waters and G. Storz, Regulatory RNAs in Bacteria, Cell, vol.136, issue.4, pp.615-628, 2009.
DOI : 10.1016/j.cell.2009.01.043

URL : https://doi.org/10.1016/j.cell.2009.01.043

I. Caldelari, Y. Chao, P. Romby, and J. Vogel, RNA-mediated regulation in pathogenic bacteria. Cold Spring Harb Perspect Med 3:a010298. https, 2013.
DOI : 10.1101/cshperspect.a010298

URL : http://perspectivesinmedicine.cshlp.org/content/3/9/a010298.full.pdf

S. Gottesman and G. Storz, Bacterial Small RNA Regulators: Versatile Roles and Rapidly Evolving Variations, Cold Spring Harbor Perspectives in Biology, vol.3, issue.12, 2011.
DOI : 10.1101/cshperspect.a003798

URL : http://cshperspectives.cshlp.org/content/3/12/a003798.full.pdf

T. Møller, T. Franch, P. Højrup, D. Keene, H. Bächinger et al., Hfq, Molecular Cell, vol.9, issue.1, pp.23-30, 2002.
DOI : 10.1016/S1097-2765(01)00436-1

M. Franze-de-fernandez, L. Eoyang, and J. August, Factor Fraction required for the Synthesis of Bacteriophage Q??-RNA, Nature, vol.59, issue.5154, pp.588-590, 1968.
DOI : 10.1038/219588a0

T. Updegrove, A. Zhang, and G. Storz, Hfq: the flexible RNA matchmaker, Current Opinion in Microbiology, vol.30, pp.133-138, 2016.
DOI : 10.1016/j.mib.2016.02.003

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4821791/pdf

Y. Chao and J. Vogel, The role of Hfq in bacterial pathogens, Current Opinion in Microbiology, vol.13, issue.1, pp.24-33, 2010.
DOI : 10.1016/j.mib.2010.01.001

H. Tsui, H. Leung, and M. Winkler, Characterization of broadly pleiotropic phenotypes caused by an hfq insertion mutation in Escherichia coli K-12, Molecular Microbiology, vol.161, issue.1, pp.35-49, 1994.
DOI : 10.1007/BF00277109

J. Vogel and B. Luisi, Hfq and its constellation of RNA, Nature Reviews Microbiology, vol.385, issue.8, pp.578-589, 2011.
DOI : 10.1038/385176a0

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4615618/pdf

A. Sittka, S. Lucchini, K. Papenfort, C. Sharma, K. Rolle et al., Deep Sequencing Analysis of Small Noncoding RNA and mRNA Targets of the Global Post-Transcriptional Regulator, Hfq, PLoS Genetics, vol.13, issue.8, 2008.
DOI : 10.1371/journal.pgen.1000163.s013

O. Wurtzel, D. Yoder-himes, K. Han, A. Dandekar, S. Edelheit et al., The Single-Nucleotide Resolution Transcriptome of Pseudomonas aeruginosa Grown in Body Temperature, PLoS Pathogens, vol.8, issue.9, 2012.
DOI : 10.1371/journal.ppat.1002945.s011

A. Nuss, A. Heroven, B. Waldmann, J. Reinkensmeier, M. Jarek et al., Transcriptomic Profiling of Yersinia pseudotuberculosis Reveals Reprogramming of the Crp Regulon by Temperature and Uncovers Crp as a Master Regulator of Small RNAs, PLOS Genetics, vol.62, issue.3, 2015.
DOI : 10.1371/journal.pgen.1005087.s023

T. Sahr, C. Rusniok, D. Dervins-ravault, O. Sismeiro, J. Coppee et al., and identifies growth phase-dependent regulated ncRNAs implicated in virulence, RNA Biology, vol.9, issue.4, pp.503-519, 2012.
DOI : 10.4161/rna.20270

URL : https://hal.archives-ouvertes.fr/pasteur-01338351

M. Jørgensen, J. Nielsen, A. Boysen, T. Franch, J. Møller-jensen et al., Small regulatory RNAs control the multi-cellular adhesive lifestyle of Escherichia coli, Molecular Microbiology, vol.9, issue.1, pp.36-50, 2012.
DOI : 10.1016/S1097-2765(01)00437-3

C. Beisel and G. Storz, Discriminating tastes, RNA Biology, vol.72, issue.5, pp.766-770, 2011.
DOI : 10.1038/nmeth895

URL : http://www.tandfonline.com/doi/pdf/10.4161/rna.8.5.16024?needAccess=true

D. Lenz, K. Mok, B. Lilley, R. Kulkarni, N. Wingreen et al., The Small RNA Chaperone Hfq and Multiple Small RNAs Control Quorum Sensing in Vibrio harveyi and Vibrio cholerae, Cell, vol.118, issue.1, pp.69-82, 2004.
DOI : 10.1016/j.cell.2004.06.009

A. Coornaert, A. Lu, P. Mandin, M. Springer, S. Gottesman et al., MicA sRNA links the PhoP regulon to cell envelope stress, Molecular Microbiology, vol.102, issue.2, pp.467-479, 2010.
DOI : 10.1128/jb.179.23.7476-7487.1997

URL : https://hal.archives-ouvertes.fr/hal-00512637

P. Sobrero and C. Valverde, The bacterial protein Hfq: much more than a mere RNA-binding factor, Critical Reviews in Microbiology, vol.41, issue.4, pp.276-299, 2012.
DOI : 10.1093/abbs/gmp060

C. Cazalet, C. Rusniok, H. Brüggemann, N. Zidane, A. Magnier et al., Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity, Nature Genetics, vol.20, issue.11, pp.1165-1173, 2004.
DOI : 10.1093/bioinformatics/btg490

T. Mcnealy, V. Forsbach-birk, C. Shi, and R. Marre, The Hfq Homolog in Legionella pneumophila Demonstrates Regulation by LetA and RpoS and Interacts with the Global Regulator CsrA, Journal of Bacteriology, vol.187, issue.4, pp.1527-1532, 2005.
DOI : 10.1128/JB.187.4.1527-1532.2005

A. Molofsky and M. Swanson, Differentiate to thrive: lessons from the Legionella pneumophila life cycle, Molecular Microbiology, vol.184, issue.1, pp.29-40, 2004.
DOI : 10.1128/jb.179.14.4639-4642.1997

R. Edwards, J. M. Sahr, T. Buchrieser, C. Swanson, and M. , The Legionella pneumophila LetA/LetS Two-Component System Exhibits Rheostat-Like Behavior, Infection and Immunity, vol.78, issue.6, pp.2571-2583, 2010.
DOI : 10.1128/IAI.01107-09

URL : http://iai.asm.org/content/78/6/2571.full.pdf

B. Hammer, E. Tateda, and M. Swanson, A two-component regulator induces the transmission phenotype of stationary-phase Legionella pneumophila, Molecular Microbiology, vol.273, issue.1, pp.107-118, 2002.
DOI : 10.1126/science.273.5279.1234

D. Lynch, N. Fieser, K. Glöggler, V. Forsbach-birk, and R. Marre, The response regulator LetA regulates the stationary-phase stress response in Legionella pneumophila and is required for efficient infection of Acanthamoeba castellanii, FEMS Microbiology Letters, vol.97, issue.2, pp.241-248, 2003.
DOI : 10.1016/S1438-4221(00)80121-6

P. Fettes, V. Forsbach-birk, D. Lynch, and R. Marre, Overexpresssion of a homologue of the regulator affects cell size, flagellation, and pigmentation, International Journal of Medical Microbiology, vol.291, issue.5, pp.353-3601438, 2001.
DOI : 10.1078/1438-4221-00141

A. Molofsky and M. Swanson, Legionella pneumophila CsrA is a pivotal repressor of transmission traits and activator of replication, Molecular Microbiology, vol.184, issue.2, pp.445-461, 2003.
DOI : 10.1128/jb.178.4.1012-1017.1996

M. Rasis and G. Segal, Icm/Dot effectors, Molecular Microbiology, vol.76, issue.4, pp.995-1010, 2009.
DOI : 10.1111/j.1365-2958.2007.06042.x

D. Auria, G. Jiménez-hernández, N. Peris-bondia, F. Moya, A. Latorre et al., Legionella pneumophila pangenome reveals strain-specific virulence factors, BMC Genomics, vol.11, issue.181, 2010.

L. Gomez-valero, C. Rusniok, S. Jarraud, B. Vacherie, Z. Rouy et al., Extensive recombination events and horizontal gene transfer shaped the Legionella pneumophila genomes, BMC Genomics, vol.16, issue.7, pp.5361471-2164, 2011.
DOI : 10.1093/bioinformatics/16.7.573

URL : https://hal.archives-ouvertes.fr/pasteur-00642457

G. Schroeder, N. Petty, A. Mousnier, C. Harding, A. Vogrin et al., Legionella pneumophila Strain 130b Possesses a Unique Combination of Type IV Secretion Systems and Novel Dot/Icm Secretion System Effector Proteins, Journal of Bacteriology, vol.192, issue.22, pp.6001-6016, 2010.
DOI : 10.1128/JB.00778-10

S. David, C. Rusniok, M. Mentasti, L. Gomez-valero, S. Harris et al., have emerged recently and independently, Genome Research, vol.26, issue.11, pp.1555-1564, 2016.
DOI : 10.1101/gr.209536.116

URL : http://genome.cshlp.org/content/26/11/1555.full.pdf

L. Gomez-valero, C. Rusniok, R. M. Neou, M. Dervins-ravault, D. Demirtas et al., Comparative analyses of Legionella species identifies genetic features of strains causing Legionnaires' disease, Genome Biol, vol.15, p.505, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01329875

H. Trigui, P. Dudyk, J. Sum, H. Shuman, and S. Faucher, Analysis of the transcriptome of Legionella pneumophila hfq mutant reveals a new mobile genetic element, Microbiology, vol.159, issue.Pt_8, pp.1649-1660, 2013.
DOI : 10.1099/mic.0.067983-0

S. Cirillo, J. Lum, and J. Cirillo, Identification of novel loci involved in entry by Legionella pneumophila, Microbiology, vol.146, issue.6, pp.1345-135900221287, 2000.
DOI : 10.1099/00221287-146-6-1345

M. Zuker, Mfold web server for nucleic acid folding and hybridization prediction, Nucleic Acids Research, vol.31, issue.13, pp.3406-3415, 2003.
DOI : 10.1093/nar/gkg595

URL : https://academic.oup.com/nar/article-pdf/31/13/3406/9487491/gkg595.pdf

J. Christiansen, J. Nielsen, T. Ebersbach, P. Valentin-hansen, L. Søgaard-andersen et al., Identification of small Hfq-binding RNAs in Listeria monocytogenes, RNA, vol.12, issue.7, pp.1383-1396, 2006.
DOI : 10.1261/rna.49706

H. Brüggemann, A. Hagman, M. Jules, O. Sismeiro, M. Dillies et al., Virulence strategies for infecting phagocytes deduced from the in vivo transcriptional program of Legionella pneumophila, Cellular Microbiology, vol.22, issue.8, pp.1228-1240, 2006.
DOI : 10.1093/nar/30.4.e15

A. Duprey, S. Reverchon, and W. Nasser, Bacterial virulence and Fis: adapting regulatory networks to the host environment, Trends in Microbiology, vol.22, issue.2, pp.92-99, 2014.
DOI : 10.1016/j.tim.2013.11.008

H. Ishikawa, H. Otaka, K. Maki, T. Morita, and H. Aiba, The functional Hfq-binding module of bacterial sRNAs consists of a double or single hairpin preceded by a U-rich sequence and followed by a 3' poly(U) tail, RNA, vol.18, issue.5, pp.1062-1074, 2012.
DOI : 10.1261/rna.031575.111

E. Sauer, S. Schmidt, and O. Weichenrieder, Small RNA binding to the lateral surface of Hfq hexamers and structural rearrangements upon mRNA target recognition, Proceedings of the National Academy of Sciences, vol.39, issue.suppl_1, pp.9396-9401, 2012.
DOI : 10.1093/nar/gkq1129

B. Vecerek, I. Moll, and U. Bläsi, Translational autocontrol of the Escherichia coli hfq RNA chaperone gene, RNA, vol.11, issue.6, pp.976-984, 2005.
DOI : 10.1261/rna.2360205

T. Zusman, Y. Speiser, and G. Segal, Two Fis Regulators Directly Repress the Expression of Numerous Effector-Encoding Genes in Legionella pneumophila, Journal of Bacteriology, vol.196, issue.23, pp.4172-418302017, 2014.
DOI : 10.1128/JB.02017-14

J. Feeley, R. Gibson, G. Gorman, N. Langford, J. Rasheed et al., Charcoal-yeast extract agar: primary isolation medium for Legionella pneumophila, J Clin Microbiol, vol.10, pp.437-441, 1979.

T. Hindré, H. Brüggemann, C. Buchrieser, and Y. Héchard, Transcriptional profiling of Legionella pneumophila biofilm cells and the influence of iron on biofilm formation, Microbiology, vol.154, issue.1, pp.30-41008698, 2007.
DOI : 10.1099/mic.0.2007/008698-0

C. Buchrieser and X. Charpentier, Induction of Competence for Natural Transformation in Legionella pneumophila and Exploitation for Mutant Construction, Methods Mol Biol, vol.954, pp.183-195, 2013.
DOI : 10.1007/978-1-62703-161-5_9

URL : https://hal.archives-ouvertes.fr/pasteur-01334089

S. Weber, C. Ragaz, and H. Hilbi, , localizes to the replicative vacuole and binds to the bacterial effector LpnE, Cellular Microbiology, vol.92, issue.3, pp.442-460, 2009.
DOI : 10.1177/002215540004800203

M. Rolando, P. Escoll, T. Nora, J. Botti, V. Boitez et al., S1P-lyase targets host sphingolipid metabolism and restrains autophagy, Proceedings of the National Academy of Sciences, vol.4, issue.5, pp.1901-1906, 2016.
DOI : 10.1111/j.1462-5822.2010.01432.x

URL : https://hal.archives-ouvertes.fr/hal-01376135

E. Milohanic, P. Glaser, J. Coppée, L. Frangeul, Y. Vega et al., Transcriptome analysis of Listeria monocytogenes identifies three groups of genes differently regulated by PrfA, Molecular Microbiology, vol.171, issue.23, pp.1613-1625, 2003.
DOI : 10.1128/jb.171.5.2795-2802.1989

Y. Yang, S. Dudoit, P. Luu, D. Lin, V. Peng et al., Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation, Nucleic Acids Research, vol.30, issue.4, 2002.
DOI : 10.1093/nar/30.4.e15

URL : https://academic.oup.com/nar/article-pdf/30/4/e15/9901208/3000e15.pdf

P. Delmar, R. S. Daudin, and J. , VarMixt: efficient variance modelling for the differential analysis of replicated gene expression data, Bioinformatics, vol.8, issue.6, pp.502-508, 2005.
DOI : 10.1089/106652701753307520

URL : https://hal.archives-ouvertes.fr/hal-00126119

A. Reiner, D. Yekutieli, and Y. Benjamini, Identifying differentially expressed genes using false discovery rate controlling procedures, Bioinformatics, vol.19, issue.3, pp.368-375, 2003.
DOI : 10.1093/bioinformatics/btf877

URL : https://academic.oup.com/bioinformatics/article-pdf/19/3/368/717620/btf877.pdf

M. Rolando, S. Sanulli, C. Rusniok, L. Gomez-valero, C. Bertholet et al., Legionella pneumophila Effector RomA Uniquely Modifies Host Chromatin to Repress Gene Expression and Promote Intracellular Bacterial Replication, Cell Host & Microbe, vol.13, issue.4, pp.395-405, 2013.
DOI : 10.1016/j.chom.2013.03.004

URL : https://hal.archives-ouvertes.fr/pasteur-01336636

S. Weber, C. Ragaz, K. Reus, Y. Nyfeler, and H. Hilbi, Legionella pneumophila Exploits PI(4)P to Anchor Secreted Effector Proteins to the Replicative Vacuole, PLoS Pathogens, vol.115, issue.5, p.46, 2006.
DOI : 10.1371/journal.ppat.0020046.st002

URL : https://doi.org/10.1371/journal.ppat.0020046