T. Rowbotham, Preliminary report on the pathogenicity of Legionella pneumophila for freshwater and soil amoebae., Journal of Clinical Pathology, vol.33, issue.12, pp.1179-1183, 1980.
DOI : 10.1136/jcp.33.12.1179

M. Steinert, U. Hentschel, and J. Hacker, : an aquatic microbe goes astray, FEMS Microbiology Reviews, vol.26, issue.2, pp.149-162, 2002.
DOI : 10.1128/9781555817985.ch25

URL : https://academic.oup.com/femsre/article-pdf/26/2/149/18125549/26-2-149.pdf

D. Fraser, Legionnaires' Disease, New England Journal of Medicine, vol.297, issue.22, pp.1189-1197, 1977.
DOI : 10.1056/NEJM197712012972201

M. Horwitz and S. Silverstein, Legionnaires' disease bacterium (Legionella pneumophila) multiples intracellularly in human monocytes, 1980.
DOI : 10.1172/jci109874

URL : http://www.jci.org/articles/view/109874/files/pdf

P. Escoll, S. Mondino, R. M. Buchrieser, and C. , 2016 Targeting of host organelles by pathogenic bacteria: a sophisticated subversion strategy, Nat. Rev. Microbiol, vol.14

A. Hubber and C. Roy, Type IV Effectors, Annual Review of Cell and Developmental Biology, vol.26, issue.1, pp.261-283
DOI : 10.1146/annurev-cellbio-100109-104034

R. Isberg, O. Connor, T. Heidtman, and M. , The Legionella pneumophila replication vacuole: making a cosy niche inside host cells, Nature Reviews Microbiology, vol.4, issue.1, pp.13-24, 2009.
DOI : 10.4161/auto.5521

P. Robertson, H. Abdelhady, and R. Garduño, 2014 The many forms of a pleomorphic bacterial pathogenthe developmental network of Legionella pneumophila, Front. Microbiol

A. Molofsky and M. Swanson, Differentiate to thrive: lessons from the Legionella pneumophila life cycle, Molecular Microbiology, vol.184, issue.1, pp.29-40, 2004.
DOI : 10.1128/jb.179.14.4639-4642.1997

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2958.2004.04129.x/pdf

B. Hammer and M. Swanson, Co-ordination of Legionella pneumophila virulence with entry into stationary phase by ppGpp, Molecular Microbiology, vol.26, issue.4, pp.721-731, 1999.
DOI : 10.1177/22.12.1077

J. Sauer, M. Bachman, and M. Swanson, The phagosomal transporter A couples threonine acquisition to differentiation and replication of Legionella pneumophila in macrophages, Proc. Natl Acad. Sci. USA, pp.9924-9929, 2005.
DOI : 10.1128/JB.182.9.2513-2519.2000

Z. Dalebroux, R. Edwards, and M. Swanson, differentiation in host macrophages, Molecular Microbiology, vol.5, issue.3, pp.640-658, 2009.
DOI : 10.1111/j.1365-2958.2008.06555.x

R. Edwards, Z. Dalebroux, and M. Swanson, couples fatty acid flux to microbial differentiation and virulence, Molecular Microbiology, vol.184, issue.5, pp.1190-1204, 2009.
DOI : 10.4049/jimmunol.180.10.6808

R. Edwards, J. M. Sahr, T. Buchrieser, C. Swanson, and M. , The Legionella pneumophila LetA/LetS Two-Component System Exhibits Rheostat-Like Behavior, Infection and Immunity, vol.78, issue.6, pp.2571-2583
DOI : 10.1128/IAI.01107-09

URL : http://iai.asm.org/content/78/6/2571.full.pdf

L. Pine, J. George, M. Reeves, and W. Harrell, 1979 Development of a chemically defined liquid medium for growth of Legionella pneumophila

J. Ristroph, K. Hedlund, and S. Gowda, Chemically defined medium for Legionella pneumophila growth, J. Clin. Microbiol, vol.13, pp.115-119, 1981.

M. Tesh and R. Miller, Amino acid requirements for Legionella pneumophila growth, J. Clin. Microbiol, vol.13, pp.865-869, 1981.

C. Cazalet, Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity, Nature Genetics, vol.20, issue.11, pp.1165-1173, 2004.
DOI : 10.1093/bioinformatics/btg490

M. Chien, The Genomic Sequence of the Accidental Pathogen Legionella pneumophila, Science, vol.305, issue.5692, 1966.
DOI : 10.1126/science.1099776

M. Steinert, K. Heuner, C. Buchrieser, C. Albert-weissenberger, and G. Glöckner, Legionella pathogenicity: Genome structure, regulatory networks and the host cell response, International Journal of Medical Microbiology, vol.297, issue.7-8, pp.577-587, 2007.
DOI : 10.1016/j.ijmm.2007.03.009

E. Eylert, V. Herrmann, J. M. Gillmaier, N. Lautner, M. Buchrieser et al., 2010 Isotopologue profiling of Legionella pneumophila: role of serine and glucose as carbon substrates

E. Harada, K. Iida, S. Shiota, H. Nakayama, and S. Yoshida, Glucose Metabolism in Legionella pneumophila: Dependence on the Entner-Doudoroff Pathway and Connection with Intracellular Bacterial Growth, Journal of Bacteriology, vol.192, issue.11, pp.2892-2899, 2010.
DOI : 10.1128/JB.01535-09

S. Faucher, C. Mueller, and H. Shuman, 2011 Legionella pneumophila transcriptome during intracellular multiplication in human macrophages
DOI : 10.3389/fmicb.2011.00060

URL : http://journal.frontiersin.org/article/10.3389/fmicb.2011.00060/pdf

M. Tesh, S. Morse, and R. Miller, Intermediary metabolism in Legionella pneumophila: utilization of amino acids and other compounds as energy sources, J. Bacteriol, vol.154, pp.1104-1109, 1983.

M. Fonseca and M. Swanson, 2014 Nutrient salvaging and metabolism by the intracellular pathogen Legionella pneumophila, Front. Cell. Infect. Microbiol
DOI : 10.3389/fcimb.2014.00012

URL : http://journal.frontiersin.org/article/10.3389/fcimb.2014.00012/pdf

M. Bachman and M. Swanson, RpoS co-operates with other factors to induce Legionella pneumophila virulence in the stationary phase, Molecular Microbiology, vol.180, issue.5, pp.1201-1214, 2001.
DOI : 10.1006/jmbi.1997.0875

Z. Dalebroux, B. Yagi, T. Sahr, C. Buchrieser, and M. Swanson, differentiation, Molecular Microbiology, vol.184, issue.5555, pp.200-219
DOI : 10.1111/j.1365-2958.2010.07094.x

M. Rasis and G. Segal, Icm/Dot effectors, Molecular Microbiology, vol.76, issue.4, pp.995-1010, 2009.
DOI : 10.1111/j.1365-2958.2007.06042.x

V. Forsbach-birk, T. Mcnealy, C. Shi, D. Lynch, and R. Marre, Reduced expression of the global regulator protein CsrA in Legionella pneumophila affects virulence-associated regulators and growth in Acanthamoeba castellanii, International Journal of Medical Microbiology, vol.294, issue.1, pp.15-25, 2004.
DOI : 10.1016/j.ijmm.2003.12.003

A. Molofsky and M. Swanson, Legionella pneumophila CsrA is a pivotal repressor of transmission traits and activator of replication, Molecular Microbiology, vol.184, issue.2, pp.445-461, 2003.
DOI : 10.1128/jb.178.4.1012-1017.1996

T. Sahr, C. Rusniok, F. Impens, G. Oliva, O. Sismeiro et al., The Legionella pneumophila genome evolved to accommodate multiple regulatory mechanisms controlled by the CsrA-system, PLOS Genetics, vol.44, issue.D1, p.1006629
DOI : 10.1371/journal.pgen.1006629.s021

URL : https://hal.archives-ouvertes.fr/pasteur-01570214

C. Vakulskas, A. Potts, P. Babitzke, B. Ahmer, and T. Romeo, Regulation of Bacterial Virulence by Csr (Rsm) Systems, Microbiology and Molecular Biology Reviews, vol.79, issue.2, pp.193-224
DOI : 10.1128/MMBR.00052-14

S. Al-khodor, S. Kalachikov, I. Morozova, C. Price, A. Kwaik et al., The PmrA/PmrB Two-Component System of Legionella pneumophila Is a Global Regulator Required for Intracellular Replication within Macrophages and Protozoa, Infection and Immunity, vol.77, issue.1, pp.374-386, 2009.
DOI : 10.1128/IAI.01081-08

G. Hovel-miner, S. Pampou, S. Faucher, M. Clarke, I. Morozova et al., ??S Controls Multiple Pathways Associated with Intracellular Multiplication of Legionella pneumophila, Journal of Bacteriology, vol.191, issue.8, pp.2461-2473, 2009.
DOI : 10.1128/JB.01578-08

A. Tiaden, T. Spirig, P. Carranza, H. Bruggemann, K. Riedel et al., Synergistic Contribution of the Legionella pneumophila lqs Genes to Pathogen-Host Interactions, Journal of Bacteriology, vol.190, issue.22, pp.7532-7547, 2008.
DOI : 10.1128/JB.01002-08

A. Tiaden, T. Spirig, S. Weber, H. Brüggemann, R. Bosshard et al., The Legionella pneumophila response regulator LqsR promotes host cell interactions as an element of the virulence regulatory network controlled by RpoS and LetA, Cellular Microbiology, vol.63, issue.12, 2007.
DOI : 10.1099/00221287-146-6-1345

R. Garduno, E. Garduno, M. Hiltz, and P. Hoffman, Intracellular Growth of Legionella pneumophila Gives Rise to a Differentiated Form Dissimilar to Stationary-Phase Forms, Infection and Immunity, vol.70, issue.11, pp.6273-6283, 2002.
DOI : 10.1128/IAI.70.11.6273-6283.2002

B. James, W. Mauchline, P. Dennis, C. Keevil, and R. Wait, Poly-3-hydroxybutyrate in Legionella pneumophila, an energy source for survival in lownutrient environments, Appl. Environ. Microbiol, vol.65, pp.822-827, 1999.

A. Steinbüchel and H. Schlegel, Physiology and molecular genetics of poly(?-hydroxyalkanoic acid) synthesis in Alcaligenes eutrophus, Molecular Microbiology, vol.172, issue.3, pp.535-542, 1991.
DOI : 10.1007/BF00498021

J. Daniel, H. Maamar, C. Deb, T. Sirakova, and P. Kolattukudy, Mycobacterium tuberculosis Uses Host Triacylglycerol to Accumulate Lipid Droplets and Acquires a Dormancy-Like Phenotype in Lipid-Loaded Macrophages, PLoS Pathogens, vol.11, issue.259, p.1002093
DOI : 10.1371/journal.ppat.1002093.t003

E. Van-assche, S. Van-puyvelde, J. Vanderleyden, and H. Steenackers, 2015 RNA-binding proteins involved in post-transcriptional regulation in bacteria, Front. Microbiol

G. Huijberts, T. De-rijk, P. De-waard, and G. Eggink, 1994 13 C nuclear magnetic resonance studies of Pseudomonas putida fatty acid metabolic routes involved in poly(3-hydroxyalkanoate) synthesis

K. Kuhle and A. Flieger, 2013 Legionella phospholipases implicated in virulence, Curr. Top. Microbiol. Immunol, vol.376, pp.175-209
DOI : 10.1007/82_2013_348

J. Bender, K. Rydzewski, M. Broich, E. Schunder, K. Heuner et al., Phospholipase PlaB of Legionella pneumophila represents a novel lipase family: protein residues essential for lipolytic activity, substrate specificity, and hemolysis, J. Biol. Chem, vol.284, issue.27, pp.185-212, 2009.

H. Bruggemann, Virulence strategies for infecting phagocytes deduced from the in vivo transcriptional program of Legionella pneumophila, Cellular Microbiology, vol.22, issue.8, pp.1228-1240, 2006.
DOI : 10.1093/nar/30.4.e15

D. Dwyer, Antibiotics induce redoxrelated physiological alterations as part of their lethality, Proc. Natl Acad. Sci. USA, pp.2100-2109, 2014.

E. Eylert, J. Schar, S. Mertins, R. Stoll, A. Bacher et al., growing inside macrophages, Molecular Microbiology, vol.228, issue.4, pp.1008-1017, 2008.
DOI : 10.1111/j.1365-2958.2008.06337.x