O. Schwartz and M. Albert, Biology and pathogenesis of chikungunya virus, Nature Reviews Microbiology, vol.81, issue.7, pp.491-500, 2010.
DOI : 10.1097/00001432-200206000-00008

URL : https://hal.archives-ouvertes.fr/pasteur-00498486

M. Thiboutot, S. Kannan, O. Kawalekar, D. Shedlock, A. Khan et al., Chikungunya: A Potentially Emerging Epidemic?, PLoS Neglected Tropical Diseases, vol.28, issue.4, 2010.
DOI : 10.1371/journal.pntd.0000623.t002

URL : https://doi.org/10.1371/journal.pntd.0000623

G. Rezza, L. Nicoletti, R. Angelini, R. Romi, A. Finarelli et al., Infection with chikungunya virus in Italy: an outbreak in a temperate region, The Lancet, vol.370, issue.9602, pp.1840-1846, 2007.
DOI : 10.1016/S0140-6736(07)61779-6

M. Grandadam, V. Caro, S. Plumet, J. Thiberge, Y. Souares et al., Chikungunya virus, southeastern France. Emerg Infect Dis, pp.910-913, 2011.
DOI : 10.3201/eid1705.101873

URL : https://hal.archives-ouvertes.fr/pasteur-01681259

A. Powers, Risks to the Americas associated with the continued expansion of chikungunya virus, Journal of General Virology, vol.96, issue.Pt_1, pp.1-5, 2015.
DOI : 10.1099/vir.0.070136-0

S. Metz, J. Gardner, C. Geertsema, T. Le, L. Goh et al., Effective Chikungunya Virus-like Particle Vaccine Produced in Insect Cells, PLoS Neglected Tropical Diseases, vol.107, issue.18, 2013.
DOI : 10.1371/journal.pntd.0002124.g006

URL : https://doi.org/10.1371/journal.pntd.0002124

S. Metz, P. Van-den-doel, C. Geertsema, A. Osterhaus, J. Vlak et al., Chikungunya virus-like particles are more immunogenic in a lethal AG129 mouse model compared to glycoprotein E1 or E2 subunits, Vaccine, vol.31, issue.51, pp.6092-6098, 2013.
DOI : 10.1016/j.vaccine.2013.09.045

A. Powers, Chikungunya virus control: Is a vaccine on the horizon? Lancet Elsevier Ltd, pp.2008-2017, 2014.

D. Hallengärd, F. Lum, B. Kümmerer, A. Lulla, V. Lulla et al., Prime-Boost Immunization Strategies against Chikungunya Virus, Journal of Virology, vol.88, issue.22, pp.13333-13376, 2014.
DOI : 10.1128/JVI.01926-14

S. Weaver, J. Osorio, J. Livengood, R. Chen, and D. Stinchcomb, Chikungunya virus and prospects for a vaccine, Expert Review of Vaccines, vol.30, issue.9, 2012.
DOI : 10.1038/emboj.2011.261

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3562718/pdf

G. Pijlman, Enveloped virus-like particles as vaccines against pathogenic arboviruses, Biotechnology Journal, vol.6, issue.2
DOI : 10.1371/journal.pone.0025816

L. Chang, K. Dowd, F. Mendoza, J. Saunders, S. Sitar et al., Safety and tolerability of chikungunya virus-like particle vaccine in healthy adults: a phase 1 dose-escalation trial, The Lancet, vol.384, issue.9959, pp.2046-52, 2014.
DOI : 10.1016/S0140-6736(14)61185-5

M. Solignat, B. Gay, S. Higgs, L. Briant, and C. Devaux, Replication cycle of chikungunya: A re-emerging arbovirus, Virology, vol.393, issue.2, pp.183-97, 2009.
DOI : 10.1016/j.virol.2009.07.024

URL : https://hal.archives-ouvertes.fr/hal-00420502

J. Strauss and E. Strauss, The alphaviruses: gene expression, replication, and evolution, Microbiol Rev, vol.58, pp.491-562, 1994.

E. Frolova, R. Gorchakov, L. Pereboeva, S. Atasheva, and I. Frolov, Functional Sindbis Virus Replicative Complexes Are Formed at the Plasma Membrane, Journal of Virology, vol.84, issue.22
DOI : 10.1128/JVI.01441-10

J. Fros, E. Van-der-maten, J. Vlak, and G. Pijlman, The C-Terminal Domain of Chikungunya Virus nsP2 Independently Governs Viral RNA Replication, Cytopathicity, and Inhibition of Interferon Signaling, Journal of Virology, vol.87, issue.18, pp.10394-400, 2013.
DOI : 10.1128/JVI.00884-13

J. Fros, W. Liu, N. Prow, C. Geertsema, M. Ligtenberg et al., Chikungunya virus nonstructural protein 2 inhibits type I/II interferonstimulated JAK-STAT signaling, J Virol American Society for Microbiol (ASM), vol.84, pp.10877-87, 2010.
DOI : 10.1128/jvi.00949-10

URL : http://jvi.asm.org/content/84/20/10877.full.pdf

I. Akhrymuk, S. Kulemzin, and E. Frolova, Evasion of the Innate Immune Response: the Old World Alphavirus nsP2 Protein Induces Rapid Degradation of Rpb1, a Catalytic Subunit of RNA Polymerase II, Journal of Virology, vol.86, issue.13, pp.7180-91, 2012.
DOI : 10.1128/JVI.00541-12

J. Fros, L. Major, F. Scholte, J. Gardner, M. Van-hemert et al., Chikungunya virus nsP2-mediated host shut-off disables the unfolded protein response, J Gen Virol, 2014.

H. Vihinen and J. Saarinen, Phosphorylation site analysis of semliki forest virus nonstructural protein 3, Journal of Biological Chemistry, vol.275, p.27775, 2000.
DOI : 10.1074/jbc.M002195200

G. Li, M. Lastarza, W. Hardy, J. Strauss, and M. Rice, Phosphorylation of sindbis virus nsP3 in vivo and in vitro, Virology, vol.179, issue.1, pp.416-443, 1990.
DOI : 10.1016/0042-6822(90)90310-N

M. Lastarza, J. Lemm, and C. Rice, Genetic Analysis of the nsP3 Region of Sindbis Virus : Evidence for Roles in Minus-Strand and Subgenomic RNA, Synthesis, vol.68, pp.5781-91, 1994.

H. Malet, B. Coutard, S. Jamal, H. Dutartre, N. Papageorgiou et al., The Crystal Structures of Chikungunya and Venezuelan Equine Encephalitis Virus nsP3 Macro Domains Define a Conserved Adenosine Binding Pocket, Journal of Virology, vol.83, issue.13, pp.6534-6579, 2009.
DOI : 10.1128/JVI.00189-09

J. Aaskov, A. Jones, W. Choi, K. Lowry, and E. Stewart, Lineage replacement accompanying duplication and rapid fixation of an RNA element in the nsP3 gene in a species of alphavirus, Virology, vol.410, issue.2, 2011.
DOI : 10.1016/j.virol.2010.11.025

G. Shin, S. Yost, M. Miller, E. Elrod, and A. Grakoui, Structural and functional insights into alphavirus polyprotein processing and pathogenesis, Proceedings of the National Academy of Sciences, vol.64, issue.6, 2012.
DOI : 10.1128/JVI.02306-06

URL : http://www.pnas.org/content/109/41/16534.full.pdf

R. Gorchakov, N. Garmashova, E. Frolova, and I. Frolov, Different Types of nsP3-Containing Protein Complexes in Sindbis Virus-Infected Cells, Journal of Virology, vol.82, issue.20, pp.10088-10101, 2008.
DOI : 10.1128/JVI.01011-08

I. Cristea, J. Carroll, M. Rout, C. Rice, B. Chait et al., -Host Protein Interactions, Journal of Biological Chemistry, vol.18, issue.40, pp.30269-78, 2006.
DOI : 10.1038/sj.emboj.7600163

K. Irvine, R. Stirling, D. Hume, and D. Kennedy, Rasputin, more promiscuous than ever: a review of G3BP, The International Journal of Developmental Biology, vol.48, issue.10, pp.1065-77, 2004.
DOI : 10.1387/ijdb.041893ki

A. Khong and J. E. , Modulation of Stress Granules and P Bodies during Dicistrovirus Infection, Journal of Virology, vol.85, issue.4, pp.1439-51, 2011.
DOI : 10.1128/JVI.02220-10

J. Buchan and R. Parker, Eukaryotic Stress Granules: The Ins and Outs of Translation, Molecular Cell, vol.36, issue.6, pp.932-973, 2009.
DOI : 10.1016/j.molcel.2009.11.020

J. Fros, N. Domeradzka, J. Baggen, C. Geertsema, J. Flipse et al., Chikungunya Virus nsP3 Blocks Stress Granule Assembly by Recruitment of G3BP into Cytoplasmic Foci, Journal of Virology, vol.86, issue.19, pp.10873-10882, 2012.
DOI : 10.1128/JVI.01506-12

M. Panas, M. Varjak, A. Lulla, K. Eng, A. Merits et al., Sequestration of G3BP coupled with efficient translation inhibits stress granules in Semliki Forest virus infection, Molecular Biology of the Cell, vol.23, issue.24, pp.4701-4713, 2012.
DOI : 10.1091/mbc.E12-08-0619

A. Vega-rúa, K. Zouache, R. Girod, A. Failloux, and R. Lourenço-de-oliveira, High Level of Vector Competence of Aedes aegypti and Aedes albopictus from Ten American Countries as a Crucial Factor in the Spread of Chikungunya Virus, Journal of Virology, vol.88, issue.11, pp.6294-30600370, 2014.
DOI : 10.1128/JVI.00370-14

K. Zouache, A. Fontaine, A. Vega-rua, L. Mousson, J. Thiberge et al., Three-way interactions between mosquito population, viral strain and temperature underlying chikungunya virus transmission potential, Proceedings of the Royal Society B: Biological Sciences, vol.4, issue.3, 2014.
DOI : 10.1016/j.actatropica.2010.04.011

URL : https://hal.archives-ouvertes.fr/pasteur-01680228

M. Mcfarlane, C. Arias-goeta, E. Martin, O. Hara, Z. Lulla et al., Characterization of Aedes aegypti Innate-Immune Pathways that Limit Chikungunya Virus Replication, PLoS Neglected Tropical Diseases, vol.89, issue.7, 2014.
DOI : 10.1371/journal.pntd.0002994.t001

URL : https://hal.archives-ouvertes.fr/hal-01343066

C. Blair, Mosquito RNAi is the major innate immune pathway controlling arbovirus infection and transmission, Future Microbiology, vol.5, issue.3, pp.265-77, 2012.
DOI : 10.1073/pnas.1014378107

K. Saxton-shaw, J. Ledermann, E. Borland, J. Stovall, E. Mossel et al., O'nyong nyong Virus Molecular Determinants of Unique Vector Specificity Reside in Non-Structural Protein 3, PLoS Neglected Tropical Diseases, vol.82, issue.1, 2013.
DOI : 10.1371/journal.pntd.0001931.s007

S. Metz, C. Geertsema, B. Martina, P. Andrade, J. Heldens et al., Functional processing and secretion of Chikungunya virus E1 and E2 glycoproteins in insect cells, Virology Journal, vol.8, issue.1, pp.353-363, 2011.
DOI : 10.1128/AEM.71.12.8472-8480.2005

E. Frolova, R. Gorchakov, N. Garmashova, S. Atasheva, L. Vergara et al., Formation of nsP3-Specific Protein Complexes during Sindbis Virus Replication, Journal of Virology, vol.80, issue.8, pp.4122-4134, 2006.
DOI : 10.1128/JVI.80.8.4122-4134.2006

M. Varjak, E. Zusinaite, and A. Merits, Novel Functions of the Alphavirus Nonstructural Protein nsP3 C-Terminal Region, Journal of Virology, vol.84, issue.5, pp.2352-64, 2010.
DOI : 10.1128/JVI.01540-09

M. Panas, T. Ahola, and G. Mcinerney, The C-Terminal Repeat Domains of nsP3 from the Old World Alphaviruses Bind Directly to G3BP, Journal of Virology, vol.88, issue.10, pp.5888-93, 2014.
DOI : 10.1128/JVI.00439-14

T. Vognsen, I. Møller, and O. Kristensen, Crystal Structures of the Human G3BP1 NTF2-Like Domain Visualize FxFG Nup Repeat Specificity, PLoS ONE, vol.179, issue.12, 2013.
DOI : 10.1371/journal.pone.0080947.t001

T. Vognsen and O. Kristensen, Crystal structure of the Rasputin NTF2-like domain from Drosophila melanogaster, Biochemical and Biophysical Research Communications, vol.420, issue.1, pp.188-92, 2012.
DOI : 10.1016/j.bbrc.2012.02.140

M. Panas, T. Schulte, B. Thaa, T. Sandalova, N. Kedersha et al., Viral and Cellular Proteins Containing FGDF Motifs Bind G3BP to Block Stress Granule Formation, PLOS Pathogens, vol.88, issue.2, 2015.
DOI : 10.1371/journal.ppat.1004659.s013

URL : http://doi.org/10.1371/journal.ppat.1004659

I. Cristea, H. Rozjabek, K. Molloy, S. Karki, L. White et al., Host Factors Associated with the Sindbis Virus RNA-Dependent RNA Polymerase: Role for G3BP1 and G3BP2 in Virus Replication, Journal of Virology, vol.84, issue.13, pp.6720-6752, 2010.
DOI : 10.1128/JVI.01983-09

F. Scholte, A. Tas, I. Albulescu, E. ?usinaite, A. Merits et al., ABSTRACT, Journal of Virology, vol.89, issue.8, pp.3612-3626, 2015.
DOI : 10.1128/JVI.03612-14

P. Mellor, Replication of Arboviruses in Insect Vectors, Journal of Comparative Pathology, vol.123, issue.4, pp.231-247, 2000.
DOI : 10.1053/jcpa.2000.0434

J. Hardy, E. Houk, L. Kramer, and W. Reeves, Intrinsic Factors Affecting Vector Competence of Mosquitoes for Arboviruses, Annual Review of Entomology, vol.28, issue.1, pp.229-262, 1983.
DOI : 10.1146/annurev.en.28.010183.001305

R. Baumgartner, H. Stocker, and E. Hafen, The RNA-binding Proteins FMR1, Rasputin and Caprin Act Together with the UBA Protein Lingerer to Restrict Tissue Growth in Drosophila melanogaster, PLoS Genetics, vol.16, issue.7, 2013.
DOI : 10.1371/journal.pgen.1003598.s009

A. Costa, C. Pazman, K. Sinsimer, L. Wong, I. Mcleod et al., Rasputin Functions as a Positive Regulator of Orb in Drosophila Oogenesis, PLoS ONE, vol.1, issue.1, 2013.
DOI : 10.1371/journal.pone.0072864.s008

C. Pazman, C. Mayes, M. Fanto, S. Haynes, and M. Mlodzik, Rasputin, the Drosophila homologue of the RasGAP SH3 binding protein, functions in Ras-and Rho-mediated signaling, Development, vol.1725, pp.1715-1740, 2000.

L. Reineke and R. Lloyd, The stress granule protein G3BP1 recruits PKR to promote multiple innate immune antiviral responses, J Virol, vol.doi, pp.10-112802791, 2014.
DOI : 10.1128/jvi.02791-14

URL : http://jvi.asm.org/content/89/5/2575.full.pdf

J. White and R. Lloyd, Regulation of stress granules in virus systems, Trends in Microbiology, vol.20, issue.4, pp.175-183, 2013.
DOI : 10.1016/j.tim.2012.02.001

J. White, A. Cardenas, W. Marissen, and R. Lloyd, Inhibition of Cytoplasmic mRNA Stress Granule Formation by a Viral Proteinase, Cell Host & Microbe, vol.2, issue.5, pp.295-305, 2007.
DOI : 10.1016/j.chom.2007.08.006

M. Emara and M. Brinton, Interaction of TIA-1/TIAR with West Nile and dengue virus products in infected cells interferes with stress granule formation and processing body assembly, Proceedings of the National Academy of Sciences, vol.80, issue.6, pp.9041-9047, 2007.
DOI : 10.1128/JVI.80.6.2987-2999.2006

Z. Yi, T. Pan, X. Wu, W. Song, S. Wang et al., Hepatitis C Virus Co-Opts Ras-GTPase-Activating Protein-Binding Protein 1 for Its Genome Replication, Journal of Virology, vol.85, issue.14, pp.6996-7004, 2011.
DOI : 10.1128/JVI.00013-11

URL : http://jvi.asm.org/content/85/14/6996.full.pdf

N. Baird, J. York, and J. Nunberg, Arenavirus infection induces discrete cytosolic structures for RNA replication, J Virol, vol.86, pp.1635-1647, 2012.
DOI : 10.1128/jvi.03442-12

URL : http://jvi.asm.org/content/87/5/2983.full.pdf

W. Li, Y. Li, N. Kedersha, P. Anderson, M. Emara et al., Cell Proteins TIA-1 and TIAR Interact with the 3 ? Stem-Loop of the West Nile Virus Complementary Minus-Strand RNA and Facilitate Virus Replication, pp.11989-12000, 2002.