P. Boeuf, H. Drummer, J. Richards, M. Scoullar, and J. Beeson, The global threat of Zika virus to pregnancy: epidemiology, clinical perspectives, mechanisms, and impact, BMC Medicine, vol.9, issue.12, p.112, 2016.
DOI : 10.4161/auto.26558

J. Lessler, L. Chaisson, L. Kucirka, Q. Bi, and K. Grantz, Assessing the global threat from Zika virus, Science, vol.32, issue.1, p.8160, 2016.
DOI : 10.1093/molbev/msu300

URL : http://science.sciencemag.org/content/sci/353/6300/aaf8160.full.pdf

N. Wikan and D. Smith, Zika virus: history of a newly emerging arbovirus, The Lancet Infectious Diseases, vol.16, issue.7, pp.119-126, 2016.
DOI : 10.1016/S1473-3099(16)30010-X

D. Gatherer and A. Kohl, Zika virus: a previously slow pandemic spreads rapidly through the Americas, Journal of General Virology, vol.97, issue.2, pp.269-273, 2016.
DOI : 10.1099/jgv.0.000381

URL : http://jgv.microbiologyresearch.org/deliver/fulltext/jgv/97/2/269_jgv000381.pdf?itemId=/content/journal/jgv/10.1099/jgv.0.000381&mimeType=pdf&isFastTrackArticle=

A. Melo, R. Aguiar, M. Amorim, M. Arruda, and F. Melo, Congenital Zika Virus Infection, JAMA Neurology, vol.73, issue.12, pp.1407-1416, 2016.
DOI : 10.1001/jamaneurol.2016.3720

T. Demir and S. Kilic, Zika virus: a new arboviral public health problem, Folia Microbiologica, vol.7, issue.1, pp.523-527, 2016.
DOI : 10.1371/journal.pntd.0002348

S. Esposito and M. Longo, Guillain???Barr?? syndrome, Autoimmunity Reviews, vol.16, issue.1, pp.96-101, 2017.
DOI : 10.1016/j.autrev.2016.09.022

C. Possas, P. Brasil, M. Marzochi, A. Tanuri, and R. Martins, Zika puzzle in Brazil: peculiar conditions of viral introduction and dissemination - A Review, Mem??rias do Instituto Oswaldo Cruz, vol.19, issue.5, pp.319-327, 2017.
DOI : 10.1016/j.chom.2016.04.006

I. Rather, S. Kumar, V. Bajpai, J. Lim, and Y. Park, Prevention and Control Strategies to Counter ZIKA Epidemic, Frontiers in Microbiology, vol.22, issue.127, p.305, 2017.
DOI : 10.1038/nm.4184

URL : http://journal.frontiersin.org/article/10.3389/fmicb.2017.00305/pdf

D. Diallo, A. Sall, C. Diagne, O. Faye, and F. O. , Zika Virus Emergence in Mosquitoes in Southeastern Senegal, 2011, PLoS ONE, vol.83, issue.10, p.109442, 2011.
DOI : 10.1371/journal.pone.0109442.s003

URL : https://doi.org/10.1371/journal.pone.0109442

O. Faye, C. Freire, A. Iamarino, O. Faye, and J. De-oliveira, Molecular Evolution of Zika Virus during Its Emergence in the 20th Century, PLoS Neglected Tropical Diseases, vol.79, issue.Pt 10, p.2636, 2014.
DOI : 10.1371/journal.pntd.0002636.s006

A. Ferreira-de-brito, I. Ribeiro, R. Miranda, R. Fernandes, and S. Campos, First detection of natural infection of Aedes aegypti with Zika virus in Brazil and throughout South America, Mem??rias do Instituto Oswaldo Cruz, vol.110, issue.4, pp.655-658, 2016.
DOI : 10.1590/0074-02760150192

M. Guerbois, I. Fernandez-salas, S. Azar, R. Danis-lozano, and C. Alpuche-aranda, Mosquitoes in the Americas, Journal of Infectious Diseases, vol.40, issue.9, pp.1349-1356, 2016.
DOI : 10.1056/NEJMoa1602412

B. Althouse, N. Vasilakis, A. Sall, M. Diallo, and S. Weaver, Potential for Zika virus to establish a sylvatic transmission cycle in the Americas, PLoS Negl Trop Dis, vol.10, p.5055, 2016.

L. Gardner, N. Chen, and S. Sarkar, Vector status of Aedes species determines geographical risk of autochthonous Zika virus establishment, PLOS Neglected Tropical Diseases, vol.64, issue.5-6, p.5487, 2017.
DOI : 10.1371/journal.pntd.0005487.s006

T. Chouin-carneiro, A. Vega-rua, M. Vazeille, A. Yebakima, and R. Girod, Differential Susceptibilities of Aedes aegypti and Aedes albopictus from the Americas to Zika Virus, PLOS Neglected Tropical Diseases, vol.39, issue.6, p.4543, 2016.
DOI : 10.1371/journal.pntd.0004543.t001

URL : https://hal.archives-ouvertes.fr/pasteur-01491874

R. Fernandes, S. Campos, A. Ferreira-de-brito, R. Miranda, and K. Barbosa-da-silva, Culex quinquefasciatus from Rio de Janeiro Is Not Competent to Transmit the Local Zika Virus, PLOS Neglected Tropical Diseases, vol.22, issue.10, p.4993, 2016.
DOI : 10.1371/journal.pntd.0004993.g003

URL : https://hal.archives-ouvertes.fr/pasteur-01486979

A. Ciota, S. Bialosuknia, S. Zink, M. Brecher, and D. Ehrbar, Mosquito Species on Vector Competence, Emerging Infectious Diseases, vol.23, issue.7, pp.1110-1117, 2017.
DOI : 10.3201/eid2307.161633

Z. Liu, T. Zhou, Z. Lai, Z. Zhang, and Z. Jia, Mosquitoes as Zika Virus Vectors, China, Emerging Infectious Diseases, vol.23, issue.7, pp.1085-1091, 2017.
DOI : 10.3201/eid2307.161528

J. Weger-lucarelli, C. Rückert, N. Chotiwan, C. Nguyen, G. Luna et al., Vector Competence of American Mosquitoes for Three Strains of Zika Virus, PLOS Neglected Tropical Diseases, vol.26, issue.10, p.5101, 2016.
DOI : 10.1371/journal.pntd.0005101.t001

C. Roundy, S. Azar, S. Rossi, J. Huang, and G. Leal, Mosquito Competence for Zika Virus Transmission, Emerging Infectious Diseases, vol.23, issue.4, pp.625-632, 2017.
DOI : 10.3201/eid2304.161484

URL : https://wwwnc.cdc.gov/eid/article/23/4/pdfs/16-1484.pdf

V. Richard, T. Paoaafaite, and V. Cao-lormeau, Vector Competence of French Polynesian Aedes aegypti and Aedes polynesiensis for Zika Virus, PLOS Neglected Tropical Diseases, vol.10, issue.9, p.5024, 2016.
DOI : 10.1371/journal.pntd.0005024.s002

P. Wong, M. Li, C. Chong, L. Ng, and C. Tan, Aedes (Stegomyia) albopictus (Skuse): A Potential Vector of Zika Virus in Singapore, PLoS Neglected Tropical Diseases, vol.75, issue.8, p.2348, 2013.
DOI : 10.1371/journal.pntd.0002348.t001

H. Dutra, M. Rocha, F. Dias, S. Mansur, and E. Caragata, Wolbachia Blocks Currently Circulating Zika Virus Isolates in Brazilian Aedes aegypti Mosquitoes, Cell Host & Microbe, vol.19, issue.6, pp.771-774, 2016.
DOI : 10.1016/j.chom.2016.04.021

URL : https://doi.org/10.1016/j.chom.2016.04.021

D. Boccolini, L. Toma, D. Luca, M. Severini, F. Romi et al., Experimental investigation of the susceptibility of Italian Culex pipiens mosquitoes to Zika virus infection, Euro Surveill, vol.21, pp.1-3, 2016.

R. Lourenço-de-oliveira and A. Failloux, Lessons learned on Zika virus vectors, PLOS Neglected Tropical Diseases, vol.22, issue.11, p.5511, 2017.
DOI : 10.1371/journal.pntd.0005511.s001

A. Farajollahi, D. Fonseca, L. Kramer, M. Kilpatrick, and A. , ???Bird biting??? mosquitoes and human disease: A review of the role of Culex pipiens complex mosquitoes in epidemiology, Infection, Genetics and Evolution, vol.11, issue.7, pp.1577-1585, 2011.
DOI : 10.1016/j.meegid.2011.08.013

A. Heitmann, S. Jansen, R. Lühken, M. Leggewie, and M. Badusche, Experimental transmission of Zika virus by mosquitoes from central Europe, Eurosurveillance, vol.113, issue.9, p.30437, 2017.
DOI : 10.1007/s00436-014-4000-z

J. Kenney, H. Romo, N. Duggal, W. Tzeng, and K. Burkhalter, Transmission Incompetence of Culex quinquefasciatus and Culex pipiens pipiens from North America for Zika Virus, The American Journal of Tropical Medicine and Hygiene, vol.96, issue.5, pp.1235-1240, 2017.
DOI : 10.4269/ajtmh.16-0865

V. Richard, T. Paoaafaite, and V. Cao-lormeau, Acquittal of Culex quinquefasciatus in transmitting Zika virus during the French Polynesian outbreak, Acta Tropica, vol.173, pp.200-201, 2017.
DOI : 10.1016/j.actatropica.2017.04.036

F. Amraoui, C. Atyame-nten, A. Vega-rúa, R. Lourenço-de-oliveira, and M. Vazeille, Culex mosquitoes are experimentally unable to transmit Zika virus, Euro Surveill, vol.21, pp.1-3, 2016.
DOI : 10.2807/1560-7917.es.2016.21.35.30333

URL : https://hal.archives-ouvertes.fr/pasteur-01473720

C. Hart, C. Roundy, S. Azar, J. Huang, and R. Yun, Zika Virus Vector Competency of Mosquitoes, Gulf Coast, United States, Emerging Infectious Diseases, vol.23, issue.3, pp.559-560, 2017.
DOI : 10.3201/eid2303.161636

B. Dodson and J. Rasgon, Table 1: Summary of Zika virus blood meal titers and mosquito sample sizes., PeerJ, vol.115, issue.10, p.3096, 2017.
DOI : 10.7717/peerj.3096/table-1

S. Hall-mendelin, A. Pyke, P. Moore, I. Mackay, and J. Mcmahon, Assessment of Local Mosquito Species Incriminates Aedes aegypti as the Potential Vector of Zika Virus in Australia, PLOS Neglected Tropical Diseases, vol.86, issue.9, p.4959, 2016.
DOI : 10.1371/journal.pntd.0004959.s001

M. Aliota, S. Peinado, J. Osorio, and L. Bartholomay, Mosquito Susceptibility to Zika Virus, Emerging Infectious Diseases, vol.22, issue.10, pp.1857-1859, 2016.
DOI : 10.3201/eid2210.161082

X. Guo, C. Li, Y. Deng, D. Xing, and Q. Liu, Culex pipiens quinquefasciatus: a potential vector to transmit Zika virus, Emerging Microbes & Infections, vol.52, issue.9, p.102, 2016.
DOI : 10.1603/0022-2585-41.3.442

URL : http://www.nature.com/emi/journal/v5/n9/pdf/emi2016102a.pdf

D. Guedes, M. Paiva, M. Donato, P. Barbosa, and L. Krokovsky, Zika virus replication in the mosquito Culex quinquefasciatus in Brazil, Emerging Microbes & Infections, vol.90, issue.8, p.69, 2017.
DOI : 10.1590/S0074-02761995000100022

K. Olson and C. Blair, Arbovirus???mosquito interactions: RNAi pathway, Current Opinion in Virology, vol.15, pp.119-126, 2015.
DOI : 10.1016/j.coviro.2015.10.001

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4765169/pdf

C. Blair and K. Olson, The Role of RNA Interference (RNAi) in Arbovirus-Vector Interactions, Viruses, vol.156, issue.2, pp.820-843, 2015.
DOI : 10.1098/rspb.2012.2437

C. Donald, A. Kohl, and E. Schnettler, New Insights into Control of Arbovirus Replication and Spread by Insect RNA Interference Pathways, Insects, vol.39, issue.4, pp.511-531, 2012.
DOI : 10.1038/ni.1664

Y. Huang, S. Higgs, and D. Vanlandingham, Biological Control Strategies for Mosquito Vectors of Arboviruses, Insects, vol.58, issue.1, p.21, 2017.
DOI : 10.1371/journal.pntd.0001724

G. Benelli, C. Jeffries, and T. Walker, Biological Control of Mosquito Vectors: Past, Present, and Future, Insects, vol.5, issue.4, p.52, 2016.
DOI : 10.1186/1471-2148-11-184

URL : https://doi.org/10.3390/insects7040052

E. Caragata, H. Dutra, and L. Moreira, Exploiting Intimate Relationships: Controlling Mosquito-Transmitted Disease with Wolbachia, Trends in Parasitology, vol.32, issue.3, pp.207-218, 2016.
DOI : 10.1016/j.pt.2015.10.011

S. Sinkins, and arbovirus inhibition in mosquitoes, Future Microbiology, vol.8, issue.10, pp.1249-1256, 2013.
DOI : 10.1073/pnas.1303603110

L. Serbus, C. Casper-lindley, F. Landmann, and W. Sullivan, -Host Interactions, Annual Review of Genetics, vol.42, issue.1, pp.683-707, 2008.
DOI : 10.1146/annurev.genet.41.110306.130354

C. Tan, P. Wong, M. Li, H. Yang, and L. Ng, wMel limits zika and chikungunya virus infection in a Singapore Wolbachia-introgressed Ae. aegypti strain, wMel-Sg, PLOS Neglected Tropical Diseases, vol.18, issue.5, p.5496, 2017.
DOI : 10.1371/journal.pntd.0005496.t001

E. Caragata, H. Dutra, and L. Moreira, Inhibition of Zika virus by Wolbachia in Aedes aegypti, Microbial Cell, vol.3, issue.7, pp.293-295, 2016.
DOI : 10.15698/mic2016.07.513

M. Aliota, S. Peinado, I. Velez, and J. Osorio, The wMel strain of Wolbachia Reduces Transmission of Zika virus by Aedes aegypti, Scientific Reports, vol.52, issue.6, p.28792, 2016.
DOI : 10.1016/j.csda.2008.04.032

J. Yen and A. Barr, The etiological agent of cytoplasmic incompatibility in Culex pipiens, Journal of Invertebrate Pathology, vol.22, issue.2, pp.242-250, 1973.
DOI : 10.1016/0022-2011(73)90141-9

G. Georghiou, R. Metcalf, and F. Gidden, Carbamate-resistance in mosquitos. Selection of Culex pipiens fatigans Wiedemann (=C. quinquefasciatus Say) for resistance to Baygon, Bull World Health Organ, vol.35, pp.691-708, 1966.

C. Atyame, F. Delsuc, N. Pasteur, M. Weill, and O. Duron, Diversification of Wolbachia Endosymbiont in the Culex pipiens Mosquito, Molecular Biology and Evolution, vol.232, issue.5313, pp.2761-2772, 2011.
DOI : 10.1038/232657a0

M. Dubrulle, L. Mousson, S. Moutailler, M. Vazeille, and A. Failloux, Chikungunya Virus and Aedes Mosquitoes: Saliva Is Infectious as soon as Two Days after Oral Infection, PLoS ONE, vol.4, issue.6, p.5895, 2009.
DOI : 10.1371/journal.pone.0005895.g005

URL : https://hal.archives-ouvertes.fr/pasteur-00395262

E. Aguiar, R. Olmo, S. Paro, F. Ferreira, and I. De-faria, Sequence-independent characterization of viruses based on the pattern of viral small RNAs produced by the host, Nucleic Acids Research, vol.44, issue.7, pp.3477-3478, 2016.
DOI : 10.1093/nar/gkw044

J. Hang, T. Klein, H. Kim, Y. Yang, and D. Jima, Genome Sequences of Five Arboviruses in Field-Captured Mosquitoes in a Unique Rural Environment of South Korea, Genome Announcements, vol.4, issue.1, pp.1644-1659, 2016.
DOI : 10.1099/vir.0.012104-0

C. Li, M. Shi, J. Tian, X. Lin, and Y. Kang, Author response, eLife, vol.32, p.5979, 2015.
DOI : 10.7554/eLife.05378.024

N. Parrish, K. Fujino, Y. Shiromoto, Y. Iwasaki, and H. Ha, piRNAs derived from ancient viral processed pseudogenes as transgenerational sequence-specific immune memory in mammals, RNA, vol.21, issue.10, pp.1691-1703, 2015.
DOI : 10.1261/rna.052092.115

S. Lequime and L. Lambrechts, Discovery of flavivirus-derived endogenous viral elements in Anopheles mosquito genomes supports the existence of Anopheles-associated insect-specific flaviviruses, Virus Evol, vol.3, p.35, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01445705

Y. Suzuki, L. Frangeul, L. Dickson, H. Blanc, and Y. Verdier, Uncovering the repertoire of endogenous flaviviral elements in Aedes mosquito genomes, J Virol, vol.91, pp.571-588, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01636504

R. Fernandes, S. Campos, P. Ribeiro, L. Raphael, and M. Bonaldo, Culex quinquefasciatus from areas with the highest incidence of microcephaly associated with Zika virus infections in the Northeast Region of Brazil are refractory to the virus, Mem??rias do Instituto Oswaldo Cruz, vol.110, issue.4, pp.577-579, 2017.
DOI : 10.1590/0074-02760150192

M. Duffy, T. Chen, W. Hancock, A. Powers, and J. Kool, Zika Virus Outbreak on Yap Island, Federated States of Micronesia, New England Journal of Medicine, vol.360, issue.24, pp.2536-2543, 2009.
DOI : 10.1056/NEJMoa0805715

URL : https://hal.archives-ouvertes.fr/pasteur-00734543

G. Grard, M. Caron, I. Mombo, D. Nkoghe, M. Ondo et al., Zika Virus in Gabon (Central Africa) ??? 2007: A New Threat from Aedes albopictus?, PLoS Neglected Tropical Diseases, vol.7, issue.2, p.2681, 2014.
DOI : 10.1371/journal.pntd.0002681.s001