, World Health Organisation, 2018.

R. Lozano, Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the global burden of disease study, Lancet, vol.380, pp.2095-2128, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00827612

C. Isiguzo, Presumptive treatment of malaria from formal and informal drug vendors in Nigeria, PLoS One, vol.9, p.110361, 2014.

K. A. Lindblade, L. Steinhardt, A. Samuels, S. P. Kachur, and L. Slutsker, The silent threat: Asymptomatic parasitemia and malaria transmission, Expert Rev Anti Infect Ther, vol.11, pp.623-639, 2013.

J. Hemingway, Tools and strategies for malaria control and elimination: What do we need to achieve a grand convergence in malaria?, PLoS Biol, vol.14, p.1002380, 2016.

M. Rougemont, Detection of four Plasmodium species in blood from humans by 18S rRNA gene subunit-based and species-specific real-time PCR assays, J Clin Microbiol, vol.42, pp.5636-5643, 2004.

J. T. Connelly, J. P. Rolland, and G. M. Whitesides, Paper machine" for molecular diagnostics, Anal Chem, vol.87, pp.7595-7601, 2015.

J. Lee, False-positive results for rapid diagnostic tests for malaria in patients with rheumatoid factor, J Clin Microbiol, vol.52, pp.3784-3787, 2014.

C. Wongsrichanalai, M. J. Barcus, S. Muth, A. Sutamihardja, and W. H. Wernsdorfer, A review of malaria diagnostic tools: Microscopy and rapid diagnostic test (RDT), Am J Trop Med Hyg, vol.77, issue.6, pp.119-127, 2007.

E. W. Wanja, Field evaluation of diagnostic performance of malaria rapid diagnostic tests in western Kenya, Malar J, vol.15, p.456, 2016.

D. G. Feleke, S. Tarko, and H. Hadush, Performance comparison of CareStart? HRP2/ pLDH combo rapid malaria test with light microscopy in north-western Tigray, Ethiopia: A cross-sectional study, BMC Infect Dis, vol.17, p.399, 2017.

, Target product profiles (TPPs) for diagnostic tests, FIND, 2014.

C. Parolo and A. Merkoçi, Paper-based nanobiosensors for diagnostics, Chem Soc Rev, vol.42, pp.450-457, 2013.

H. Hopkins, Highly sensitive detection of malaria parasitemia in a malariaendemic setting: Performance of a new loop-mediated isothermal amplification kit in a remote clinic in Uganda, J Infect Dis, vol.208, pp.645-652, 2013.

L. Wu, Comparison of diagnostics for the detection of asymptomatic Plasmodium falciparum infections to inform control and elimination strategies, Nature, vol.528, pp.86-93, 2015.

S. Alemayehu, Comparative evaluation of published real-time PCR assays for the detection of malaria following MIQE guidelines, Malar J, vol.12, p.277, 2013.

T. Notomi, Loop-mediated isothermal amplification of DNA, Nucleic Acids Res, vol.28, p.63, 2000.

Y. Zhao, F. Chen, Q. Li, L. Wang, and C. Fan, Isothermal amplification of nucleic acids, Chem Rev, vol.115, pp.12491-12545, 2015.

Y. Kurosaki, Development and evaluation of reverse transcription-loopmediated isothermal amplification (RT-LAMP) assay coupled with a portable device for rapid diagnosis of Ebola virus disease in Guinea, PLoS Negl Trop Dis, vol.10, p.4472, 2016.

J. Cook, Loop-mediated isothermal amplification (LAMP) for point-of-care detection of asymptomatic low-density malaria parasite carriers in Zanzibar, Malar J, vol.14, p.43, 2015.

L. Magro, Paper microfluidics for nucleic acid amplification testing (NAAT) of infectious diseases, Lab Chip, vol.17, pp.2347-2371, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01671743

J. Aveyard, M. Mehrabi, A. Cossins, H. Braven, and R. Wilson, One step visual detection of PCR products with gold nanoparticles and a nucleic acid lateral flow (NALF) device, Chem Commun (Camb), pp.4251-4253, 2007.

A. W. Martinez, S. T. Phillips, G. M. Whitesides, and E. Carrilho, Diagnostics for the developing world: Microfluidic paper-based analytical devices, Anal Chem, vol.82, pp.3-10, 2010.

L. Magro, Paper-based RNA detection and multiplexed analysis for Ebola virus diagnostics, Sci Rep, vol.7, p.1347, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01570241

G. Xu, Paper-origami-based multiplexed malaria diagnostics from whole blood, Angew Chem Int Ed Engl, vol.55, pp.15250-15253, 2016.

Z. Yang, Rapid veterinary diagnosis of bovine reproductive infectious diseases from semen using paper-origami DNA microfluidics, ACS Sens, vol.3, pp.403-409, 2018.

E. Carrilho, A. W. Martinez, and G. M. Whitesides, Understanding wax printing: A simple micropatterning process for paper-based microfluidics, Anal Chem, vol.81, pp.7091-7095, 2009.

G. Xu, Application of PCR-LDR-nucleic acid detection strip in detection of YMDD mutation in hepatitis B patients treated with lamivudine, J Med Virol, vol.82, pp.1143-1149, 2010.

K. Iwai, Finger-powered microfluidic systems using multilayer soft lithography and injection molding processes, Lab Chip, vol.14, pp.3790-3799, 2014.

D. J. Padley, A. B. Heath, C. Sutherland, P. L. Chiodini, and S. A. Baylis,

, Establishment of the 1st World Health Organization International Standard for Plasmodium falciparum DNA for nucleic acid amplification technique (NAT)-based assays, Malar J, vol.7, p.139, 2008.

S. D. Polley, Mitochondrial DNA targets increase sensitivity of malaria detection using loop-mediated isothermal amplification, J Clin Microbiol, vol.48, pp.2866-2871, 2010.

S. Jahanshahi-anbuhi, Pullulan encapsulation of labile biomolecules to give stable bioassay tablets, Angew Chem Int Ed Engl, vol.53, pp.6155-6158, 2014.

S. Das, Performance of a high-sensitivity rapid diagnostic test for Plasmodium falciparum malaria in asymptomatic individuals from Uganda and Myanmar and naive human challenge infections, Am J Trop Med Hyg, vol.97, pp.1540-1550, 2017.

M. S. Hsiang, PCR-based pooling of dried blood spots for detection of malaria parasites: Optimization and application to a cohort of Ugandan children, J Clin Microbiol, vol.48, pp.3539-3543, 2010.

A. Ng, A digital microfluidic system for serological immunoassays in remote settings, Sci Transl Med, vol.10, p.6076, 2018.

L. Canier, An innovative tool for moving malaria PCR detection of parasite reservoir into the field, Malar J, vol.12, p.405, 2013.

S. Britton, Q. Cheng, and J. S. Mccarthy, Novel molecular diagnostic tools for malaria elimination: A review of options from the point of view of high-throughput and applicability in resource limited settings, Malar J, vol.15, p.88, 2016.

S. Smith, CD-based microfluidics for primary care in extreme point-of-care settings, p.22, 2016.

D. R. Bienek and D. G. Charlton, The effect of simulated field storage conditions on the accuracy of rapid user-friendly blood pathogen detection kits, Mil Med, vol.177, pp.583-588, 2012.

K. Yamada, H. Shibata, K. Suzuki, and D. Citterio, Toward practical application of paper-based microfluidics for medical diagnostics: State-of-the-art and challenges, Lab Chip, vol.17, pp.1206-1249, 2017.

M. M. Gong and D. Sinton, Turning the page: Advancing paper-based microfluidics for broad diagnostic application, Chem Rev, vol.117, pp.8447-8480, 2017.

L. Ge, S. Wang, X. Song, S. Ge, and J. Yu, 3D origami-based multifunction-integrated immunodevice: Low-cost and multiplexed sandwich chemiluminescence immunoassay on microfluidic paper-based analytical device, Lab Chip, vol.12, pp.3150-3158, 2012.

A. V. Govindarajan, S. Ramachandran, G. D. Vigil, P. Yager, and K. F. Böhringer, A low cost point-of-care viscous sample preparation device for molecular diagnosis in the developing world; an example of microfluidic origami, Lab Chip, vol.12, pp.174-181, 2012.

B. Moonen, Operational strategies to achieve and maintain malaria elimination, Lancet, vol.376, pp.1592-1603, 2010.

E. Han, Detection of four Plasmodium species by genus-and speciesspecific loop-mediated isothermal amplification for clinical diagnosis, J Clin Microbiol, vol.45, pp.2521-2528, 2007.

N. A. Tanner, Y. Zhang, T. C. Evans, and J. , Simultaneous multiple target detection in real-time loop-mediated isothermal amplification, Biotechniques, vol.52, pp.81-89, 2012.

Y. Lu, W. Shi, L. Jiang, J. Qin, and B. Lin, Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay, Electrophoresis, vol.30, pp.1497-1500, 2009.

M. A. Bujang and T. H. Adnan, Requirements for minimum sample size for sensitivity and specificity analysis, J Clin Diagn Res, vol.10, pp.1-06, 2016.

. Ministry and . Health, Measures on Ethical Review over Biomedical Research Involving Human Subjects (Ministry of Health, 2017.

J. Schindelin, C. T. Rueden, M. C. Hiner, and K. W. Eliceiri, The ImageJ ecosystem: An open platform for biomedical image analysis, Mol Reprod Dev, vol.82, pp.518-529, 2015.

J. C. Linnes, N. M. Rodriguez, L. Liu, and C. M. Klapperich, Polyethersulfone improves isothermal nucleic acid amplification compared to current paper-based diagnostics, Biomed Microdevices, vol.18, p.30, 2016.

, DPDx: Malaria, Centers for Disease Control, 2017.

J. Reboud, Data from "Paper-based microfluidics for DNA diagnostics of malaria in low resource under-served rural environments, 2018.