B. Nelson, IL-2, Regulatory T Cells, and Tolerance, The Journal of Immunology, vol.172, issue.7, pp.3983-3988, 2004.
DOI : 10.4049/jimmunol.172.7.3983

URL : http://www.jimmunol.org/content/jimmunol/172/7/3983.full.pdf

O. Boyman and J. Sprent, The role of interleukin-2 during homeostasis and activation of the immune system, Nature Reviews Immunology, vol.108, pp.180-190, 2012.
DOI : 10.1073/pnas.1009738108

M. B. Atkins, High-Dose Recombinant Interleukin 2 Therapy for Patients With Metastatic Melanoma: Analysis of 270 Patients Treated Between 1985 and 1993, Journal of Clinical Oncology, vol.17, issue.7, pp.2105-2116, 1999.
DOI : 10.1200/JCO.1999.17.7.2105

J. A. Klapper, High???dose interleukin???2 for the treatment of metastatic renal cell carcinoma, Cancer, vol.356, issue.2, pp.293-301, 1986.
DOI : 10.1007/978-1-4757-3656-4_36

A. Amin, R. L. White, and . Jr, High-dose interleukin-2: is it still indicated for melanoma and RCC in an era of targeted therapies?, Oncology, vol.27, pp.680-691, 2013.

R. N. Schwartz, L. Stover, and J. Dutcher, Managing toxicities of high-dose interleukin-2, Oncology, vol.16, pp.11-20, 2002.

J. C. Yang, Randomized Study of High-Dose and Low-Dose Interleukin-2 in Patients With Metastatic Renal Cancer, Journal of Clinical Oncology, vol.21, issue.16, pp.3127-3132, 2003.
DOI : 10.1200/JCO.2003.02.122

J. Dutcher, High dose interleukin-2 (Aldesleukin) - expert consensus on best management practices-2014, Journal for ImmunoTherapy of Cancer, vol.4, issue.4, p.26, 2014.
DOI : 10.2147/CMAR.S33979

URL : https://doi.org/10.1186/s40425-014-0026-0

J. P. Siegel and R. K. Puri, Interleukin-2 toxicity., Journal of Clinical Oncology, vol.9, issue.4, pp.694-704, 1991.
DOI : 10.1200/JCO.1991.9.4.694

T. R. Mosmann, Species-specificity of T cell stimulating activities of IL 2 and BSF-1 (IL 4): comparison of normal and recombinant, mouse and human IL 2 and BSF-1 (IL 4), J. Immunol, vol.138, pp.1813-1816, 1987.

M. Rosenstein, S. E. Ettinghausen, and S. A. Rosenberg, Extravasation of intravascular fluid mediated by the systemic administration of recombinant interleukin 2, J. Immunol, vol.137, pp.1735-1742, 1986.

S. E. Ettinghausen, R. K. Puri, and S. A. Rosenberg, Increased Vascular Permeability in Organs Mediated by the Systemic Administration of Lymphokine-Activated Killer Cells and Recombinant Interleukin-2 in Mice, JNCI Journal of the National Cancer Institute, vol.80, issue.3, pp.177-188, 1988.
DOI : 10.1093/jnci/80.3.177

M. K. Gately, T. D. Anderson, and T. J. Hayes, Role of asialo-GM1-positive lymphoid cells in mediating the toxic effects of recombinant IL-2 in mice

D. J. Peace and M. A. Cheever, Toxicity and therapeutic efficacy of high-dose interleukin 2. In vivo infusion of antibody to NK-1.1 attenuates toxicity without compromising efficacy against murine leukemia, Journal of Experimental Medicine, vol.169, issue.1, pp.161-173, 1989.
DOI : 10.1084/jem.169.1.161

URL : http://jem.rupress.org/content/jem/169/1/161.full.pdf

C. Krieg, S. Letourneau, G. Pantaleo, and O. Boyman, Improved IL-2 immunotherapy by selective stimulation of IL-2 receptors on lymphocytes and endothelial cells, Proc. Natl Acad. Sci. USA, pp.11906-11911, 2010.
DOI : 10.1016/j.yrtph.2004.03.001

R. Baluna and E. Vitetta, Vascular leak syndrome: a side effect of immunotherapy, Immunopharmacology, vol.37, issue.2-3, pp.117-132, 1997.
DOI : 10.1016/S0162-3109(97)00041-6

A. R. Chavez, Pharmacologic Administration of Interleukin-2, Annals of the New York Academy of Sciences, vol.361, issue.16, pp.14-27, 2009.
DOI : 10.1111/j.1749-6632.2009.05160.x

M. Ahmadzadeh and S. A. Rosenberg, IL-2 administration increases CD4+CD25hi Foxp3+ regulatory T cells in cancer patients, Blood, vol.107, issue.6, pp.2409-2414, 2006.
DOI : 10.1182/blood-2005-06-2399

URL : http://www.bloodjournal.org/content/bloodjournal/107/6/2409.full.pdf

G. C. Cesana, Regulatory T Cells in Patients Treated With High-Dose Interleukin-2 for Metastatic Melanoma or Renal Cell Carcinoma, Journal of Clinical Oncology, vol.24, issue.7, pp.1169-1177, 2006.
DOI : 10.1200/JCO.2005.03.6830

G. C. Sim, IL-2 therapy promotes suppressive ICOS+ Treg expansion in melanoma patients, Journal of Clinical Investigation, vol.124, issue.1, pp.99-110, 2014.
DOI : 10.1172/JCI46266DS1

URL : http://www.jci.org/articles/view/46266/files/pdf

J. B. Spangler, Antibodies to Interleukin-2 Elicit Selective T Cell Subset Potentiation through Distinct Conformational Mechanisms, Immunity, vol.42, issue.5, pp.815-825, 2015.
DOI : 10.1016/j.immuni.2015.04.015

URL : https://doi.org/10.1016/j.immuni.2015.04.015

A. M. Levin, Exploiting a natural conformational switch to engineer an interleukin-2 ???superkine???, Nature, vol.18, issue.7395, pp.529-533, 2012.
DOI : 10.1016/j.sbi.2008.01.008

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3338870/pdf

D. Klatzmann and A. K. Abbas, The promise of low-dose interleukin-2 therapy for autoimmune and inflammatory diseases, Nature Reviews Immunology, vol.134, issue.5, pp.283-294, 2015.
DOI : 10.1016/S0140-6736(00)02799-9

URL : https://hal.archives-ouvertes.fr/inserm-01617541

N. Legrand, Humanized Mice for Modeling Human Infectious Disease: Challenges, Progress, and Outlook, Cell Host & Microbe, vol.6, issue.1, pp.5-9, 2009.
DOI : 10.1016/j.chom.2009.06.006

URL : https://doi.org/10.1016/j.chom.2009.06.006

L. D. Shultz, F. Ishikawa, and D. L. Greiner, Humanized mice in translational biomedical research, Nature Reviews Immunology, vol.18, issue.2, pp.118-130, 2007.
DOI : 10.1016/S0002-9440(10)63352-4

N. Legrand, Functional CD47/signal regulatory protein alpha (SIRP??) interaction is required for optimal human T- and natural killer- (NK) cell homeostasis in vivo, Proc. Natl Acad. Sci. USA, pp.13224-13229, 2011.
DOI : 10.1016/j.cell.2005.08.032

Q. Chen, M. Khoury, and J. Chen, Expression of human cytokines dramatically improves reconstitution of specific human-blood lineage cells in humanized mice, Proc. Natl Acad. Sci. USA, pp.21783-21788, 2009.
DOI : 10.1182/blood-2007-11-122119

Y. Li, Induction of Functional Human Macrophages from Bone Marrow Promonocytes by M-CSF in Humanized Mice, The Journal of Immunology, vol.191, issue.6, pp.3192-3199, 2013.
DOI : 10.4049/jimmunol.1300742

A. Rongvaux, Human Hemato-Lymphoid System Mice: Current Use and Future Potential for Medicine, Annual Review of Immunology, vol.31, issue.1, pp.635-674, 2013.
DOI : 10.1146/annurev-immunol-032712-095921

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4120191/pdf

Y. Li, A novel Flt3-deficient HIS mouse model with selective enhancement of human DC development, European Journal of Immunology, vol.174, issue.5, pp.1291-1299, 2016.
DOI : 10.4049/jimmunol.174.2.727

A. I. Lim, Systemic Human ILC Precursors Provide a Substrate for Tissue ILC Differentiation, Cell, vol.168, issue.6, pp.1086-1100, 2017.
DOI : 10.1016/j.cell.2017.02.021

I. F. Amado, IL-2 coordinates IL-2???producing and regulatory T cell interplay, The Journal of Experimental Medicine, vol.210, issue.12, pp.2707-2720, 2013.
DOI : 10.1371/journal.pone.0017423

URL : https://hal.archives-ouvertes.fr/pasteur-00906700

E. Billerbeck, Development of human CD4+FoxP3+ regulatory T cells in human stem cell factor-, granulocyte-macrophage colony-stimulating factor-, and interleukin-3-expressing NOD-SCID IL2R??null humanized mice, Blood, vol.117, issue.11, pp.3076-3086, 2011.
DOI : 10.1182/blood-2010-08-301507

T. Onoe, Human Natural Regulatory T Cell Development, Suppressive Function, and Postthymic Maturation in a Humanized Mouse Model, The Journal of Immunology, vol.187, issue.7
DOI : 10.4049/jimmunol.1100394

X. Chen, regulatory T cells in human peripheral blood, European Journal of Immunology, vol.30, issue.4, pp.1099-1106, 2010.
DOI : 10.1016/j.immuni.2009.03.019

W. J. Housley, Natural but Not Inducible Regulatory T Cells Require TNF-?? Signaling for In Vivo Function, The Journal of Immunology, vol.186, issue.12, pp.6779-6787, 2011.
DOI : 10.4049/jimmunol.1003868

G. Oldenhove, Decrease of Foxp3+ Treg Cell Number and Acquisition of Effector Cell Phenotype during Lethal Infection, Immunity, vol.31, issue.5, pp.772-786, 2009.
DOI : 10.1016/j.immuni.2009.10.001

A. Kimura and T. Kishimoto, IL-6: Regulator of Treg/Th17 balance, European Journal of Immunology, vol.8, issue.7, pp.1830-1835, 2010.
DOI : 10.1186/ar1916

URL : http://onlinelibrary.wiley.com/doi/10.1002/eji.201040391/pdf

G. Gasteiger, S. Hemmers, P. D. Bos, J. C. Sun, and A. Rudensky, IL-2???dependent adaptive control of NK cell homeostasis, The Journal of Experimental Medicine, vol.143, issue.6, pp.1179-1187, 2013.
DOI : 10.1016/j.smim.2011.10.002

URL : http://jem.rupress.org/content/jem/210/6/1179.full.pdf

J. Cuende, Monoclonal antibodies against GARP/TGF-beta1 complexes inhibit the immunosuppressive activity of human regulatory T cells in vivo, Sci. Transl. Med, vol.7, pp.284-256, 2015.

Y. Gao, Inflammation negatively regulates FOXP3 and regulatory T-cell function via DBC1, Proc. Natl Acad. Sci. USA, pp.3246-3254, 2015.
DOI : 10.1093/jmcb/mjs063

URL : http://www.pnas.org/content/112/25/E3246.full.pdf

Z. Li, PIM1 Kinase Phosphorylates the Human Transcription Factor FOXP3 at Serine 422 to Negatively Regulate Its Activity under Inflammation, Journal of Biological Chemistry, vol.20, issue.39, pp.26872-26881, 2014.
DOI : 10.4049/jimmunol.0903314

URL : http://www.jbc.org/content/289/39/26872.full.pdf

F. Lin, Kaempferol enhances the suppressive function of Treg cells by inhibiting FOXP3 phosphorylation, International Immunopharmacology, vol.28, issue.2, pp.859-865, 2015.
DOI : 10.1016/j.intimp.2015.03.044

D. M. Pardoll, The blockade of immune checkpoints in cancer immunotherapy, Nature Reviews Cancer, vol.12, issue.4, pp.252-264, 2012.
DOI : 10.1038/nrc3237

D. Mcdermott, Durable benefit and the potential for long-term survival with immunotherapy in advanced melanoma, Cancer Treatment Reviews, vol.40, issue.9, pp.1056-1064, 2014.
DOI : 10.1016/j.ctrv.2014.06.012

J. M. Michot, Immune-related adverse events with immune checkpoint blockade: a comprehensive review, European Journal of Cancer, vol.54, pp.139-148, 2016.
DOI : 10.1016/j.ejca.2015.11.016

D. B. Johnson, Fulminant Myocarditis with Combination Immune Checkpoint Blockade, New England Journal of Medicine, vol.375, issue.18, pp.1749-1755, 2016.
DOI : 10.1056/NEJMoa1609214

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5247797/pdf

J. H. Cho, Unique Features of Naive CD8+ T Cell Activation by IL-2, The Journal of Immunology, vol.191, issue.11, pp.5559-5573, 2013.
DOI : 10.4049/jimmunol.1302293

F. Lin, Kaempferol enhances the suppressive function of Treg cells by inhibiting FOXP3 phosphorylation, International Immunopharmacology, vol.28, issue.2, pp.859-865, 2015.
DOI : 10.1016/j.intimp.2015.03.044

Y. Q. Zeng, Kaempferol Promotes Transplant Tolerance by Sustaining CD4+FoxP3+ Regulatory T Cells in the Presence of Calcineurin Inhibitor, American Journal of Transplantation, vol.5, issue.7, pp.1782-1792, 2015.
DOI : 10.1126/scitranslmed.3004970

M. Hamalainen, R. Nieminen, P. Vuorela, M. Heinonen, and E. Moilanen, Antiinflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-kappaB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-kappaB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages, Mediators Inflamm, p.45673, 2007.

M. K. Lin, Kaempferol from Semen cuscutae attenuates the immune function of dendritic cells, Immunobiology, vol.216, issue.10, pp.1103-1109, 2011.
DOI : 10.1016/j.imbio.2011.05.002