D. J. Slotboom, W. N. Konings, and J. S. Lolkema, Structural features of the 588 glutamate transporter family, Microbiol Mol Biol Rev, vol.63, pp.293-307, 1999.

Y. Kanai and M. A. Hediger, The glutamate and neutral amino acid transporter family: physiological and pharmacological implications, European Journal of Pharmacology, vol.479, issue.1-3, pp.237-247, 2003.
DOI : 10.1016/j.ejphar.2003.08.073

N. C. Danbolt and . Glutamate-uptake, Glutamate uptake, Progress in Neurobiology, vol.65, issue.1, pp.1-105, 2001.
DOI : 10.1016/S0301-0082(00)00067-8

K. P. Lehre and N. C. Danbolt, The number of glutamate transporter subtype 594 molecules at glutamatergic synapses: chemical and stereological 595 quantification in young adult rat brain, J Neurosci, vol.18, pp.8751-8757, 1998.

N. Zerangue and M. P. Kavanaugh, Flux coupling in a neuronal glutamate transporter, Nature, vol.383, issue.6601, pp.634-637383634, 1996.
DOI : 10.1038/383634a0

J. D. Rothstein, M. Van-kammen, A. I. Levey, L. J. Martin, and R. W. Kuncl, Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis, Annals of Neurology, vol.20, issue.1, pp.73-8410, 1995.
DOI : 10.1002/ana.410380114

N. Winter, P. Kovermann, and C. Fahlke, A point mutation associated with 602 episodic ataxia 6 increases glutamate transporter anion currents, Brain, vol.603, issue.135, pp.3416-342510, 2012.
DOI : 10.1093/brain/aws255

URL : https://academic.oup.com/brain/article-pdf/135/11/3416/17863177/aws255.pdf

K. D. Choi, Late-onset episodic ataxia associated with SLC1A3 605 mutation, J Hum Genet, p.137, 2016.
DOI : 10.1038/jhg.2016.137

X. D. Chao, F. Fei, and Z. Fei, The Role of Excitatory Amino Acid Transporters in Cerebral Ischemia, Neurochemical Research, vol.12, issue.8, pp.1224-123010, 2010.
DOI : 10.1097/01.WCB.0000110539.96047.FC

A. Pilc, J. M. Wieronska, and P. Skolnick, Glutamate-Based Antidepressants: Preclinical Psychopharmacology, Biological Psychiatry, vol.73, issue.12, pp.1125-1132021, 2013.
DOI : 10.1016/j.biopsych.2013.01.021

S. M. Robert and H. Sontheimer, Glutamate transporters in the biology of malignant gliomas, Cellular and Molecular Life Sciences, vol.27, issue.25, pp.1839-185410, 2014.
DOI : 10.1200/JCO.2008.21.6895

C. G. Bailey, Loss-of-function mutations in the glutamate transporter SLC1A1 cause human dicarboxylic aminoaciduria, Journal of Clinical Investigation, vol.121, issue.1, pp.446-61710, 2011.
DOI : 10.1172/JCI44474DS1

N. Zerangue and M. P. Kavanaugh, ASCT-1 Is a Neutral Amino Acid Exchanger with Chloride Channel Activity, Journal of Biological Chemistry, vol.62, issue.45, pp.27991-27994, 1996.
DOI : 10.1016/S0006-3495(96)79613-3

URL : http://www.jbc.org/content/271/45/27991.full.pdf

Q. Wang, Targeting glutamine transport to suppress melanoma cell growth, International Journal of Cancer, vol.20, issue.5, pp.1060-107128749, 2014.
DOI : 10.1158/1078-0432.CCR-12-2334

URL : http://onlinelibrary.wiley.com/doi/10.1002/ijc.28749/pdf

K. Shimizu, ASC amino-acid transporter 2 (ASCT2) as a novel 623 prognostic marker in non-small cell lung cancer, Br J Cancer, vol.110, p.88, 2014.

Q. Wang, Targeting ASCT2-mediated glutamine uptake blocks prostate cancer growth and tumour development, The Journal of Pathology, vol.40, issue.3, pp.278-2894518, 2015.
DOI : 10.1016/j.immuni.2014.04.007

URL : http://onlinelibrary.wiley.com/doi/10.1002/path.4518/pdf

M. Van-geldermalsen, ASCT2/SLC1A5 controls glutamine uptake and tumour growth in triple-negative basal-like breast cancer, Oncogene, vol.96, issue.24, pp.3201-3208381, 2016.
DOI : 10.1186/1476-4598-9-299

K. Shimamoto, Glutamate transporter blockers for elucidation of the function of excitatory neurotransmission systems, The Chemical Record, vol.72, issue.3, pp.182-19920145, 2008.
DOI : 10.1002/tcr.20145

C. Grewer and E. Grabsch, -dependent anion leak, The Journal of Physiology, vol.271, issue.3, pp.747-759062521, 2004.
DOI : 10.1074/jbc.271.45.27991

A. A. Jensen, Discovery of the First Selective Inhibitor of Excitatory Amino Acid Transporter Subtype 1, Journal of Medicinal Chemistry, vol.52, issue.4, pp.912-915, 2009.
DOI : 10.1021/jm8013458

B. Abrahamsen, Allosteric Modulation of an Excitatory Amino Acid Transporter: The Subtype-Selective Inhibitor UCPH-101 Exerts Sustained Inhibition of EAAT1 through an Intramonomeric Site in the Trimerization Domain, Journal of Neuroscience, vol.33, issue.3, pp.1068-108710, 2013.
DOI : 10.1523/JNEUROSCI.3396-12.2013

D. Yernool, O. Boudker, Y. Jin, and E. Gouaux, Structure of a glutamate transporter homologue from Pyrococcus horikoshii, Nature, vol.22, issue.7010, pp.811-81810, 1038.
DOI : 10.1107/S0108767393007597

N. Reyes, C. Ginter, and O. Boudker, Transport mechanism of a bacterial homologue of glutamate transporters, Nature, vol.23, issue.7275, pp.880-885, 2009.
DOI : 10.1038/nature08616

N. Akyuz, Transport domain unlocking sets the uptake rate of an aspartate transporter, Nature, vol.7, issue.7537, pp.68-7310, 2015.
DOI : 10.1038/msb.2011.75

O. Boudker, R. M. Ryan, D. Yernool, K. Shimamoto, and E. Gouaux, Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter, Nature, vol.52, issue.7126, pp.387-39310, 2007.
DOI : 10.1107/S0907444995016477

B. Steipe, B. Schiller, A. Pluckthun, and S. Steinbacher, Sequence Statistics Reliably Predict Stabilizing Mutations in a Protein Domain, Journal of Molecular Biology, vol.240, issue.3, pp.188-1921434, 1994.
DOI : 10.1006/jmbi.1994.1434

Y. Zhang, A. Bendahan, R. Zarbiv, M. P. Kavanaugh, and B. Kanner, Molecular determinant of ion selectivity of a (Na+ + K+)-coupled rat brain glutamate transporter, Proceedings of the National Academy of Sciences, vol.270, issue.42, pp.751-755, 1998.
DOI : 10.1074/jbc.270.42.25207

R. P. Seal and S. G. Amara, A Reentrant Loop Domain in the Glutamate Carrier EAAT1 Participates in Substrate Binding and Translocation, Neuron, vol.21, issue.6, pp.1487-1498, 1998.
DOI : 10.1016/S0896-6273(00)80666-2

Z. Tao, Mechanism of cation binding to the glutamate transporter 668 EAAC1 probed with mutation of the conserved amino acid residue 669

H. P. Larsson, Evidence for a third sodium-binding site in glutamate 672 transporters suggests an ion/substrate coupling model, Proc Natl Acad Sci, vol.673, issue.107, pp.13912-1391710, 2010.

A. Guskov, S. Jensen, I. Faustino, S. J. Marrink, and D. J. Slotboom, Coupled 675 binding mechanism of three sodium ions and aspartate in the glutamate 676 transporter homologue GltTk, Nat Commun, vol.7, pp.677-687, 2016.

T. J. Crisman, S. Qu, B. I. Kanner, and L. R. Forrest, Inward-facing conformation of glutamate transporters as revealed by their inverted-topology structural repeats, Proceedings of the National Academy of Sciences, vol.275, issue.48, pp.20752-20757, 2009.
DOI : 10.1074/jbc.M006536200

P. J. Focke, P. Moenne-loccoz, and H. P. Larsson, Opposite Movement of the External Gate of a Glutamate Transporter Homolog upon Binding Cotransported Sodium Compared with Substrate, Journal of Neuroscience, vol.31, issue.16, pp.6255-685, 2011.
DOI : 10.1523/JNEUROSCI.6096-10.2011

L. Brocke, A. Bendahan, M. Grunewald, and B. Kanner, Proximity of Two Oppositely Oriented Reentrant Loops in the Glutamate Transporter GLT-1 Identified by Paired Cysteine Mutagenesis, Journal of Biological Chemistry, vol.18, issue.6, pp.3985-3992, 2002.
DOI : 10.1126/science.290.5491.481

S. Qu and B. Kanner, Substrates and Non-transportable Analogues Induce Structural Rearrangements at the Extracellular Entrance of the Glial Glutamate Transporter GLT-1/EAAT2, Journal of Biological Chemistry, vol.42, issue.39, pp.26391-26400, 2008.
DOI : 10.1074/jbc.M704087200

R. P. Seal, B. H. Leighton, and S. G. Amara, A Model for the Topology of Excitatory Amino Acid Transporters Determined by the Extracellular Accessibility of Substituted Cysteines, Neuron, vol.25, issue.3, pp.695-706, 2000.
DOI : 10.1016/S0896-6273(00)81071-5

M. Grunewald, A. Bendahan, and B. Kanner, Biotinylation of Single Cysteine Mutants of the Glutamate Transporter GLT-1 from Rat Brain Reveals Its Unusual Topology, Neuron, vol.21, issue.3, pp.623-632, 1998.
DOI : 10.1016/S0896-6273(00)80572-3

R. M. Ryan, N. C. Kortt, T. Sirivanta, and R. J. Vandenberg, The position of an arginine residue influences substrate affinity and K+ coupling in the human glutamate transporter, EAAT1, Journal of Neurochemistry, vol.271, issue.2, pp.565-575, 2010.
DOI : 10.1074/jbc.271.45.27991

L. Borre and B. Kanner, Arginine 445 controls the coupling between 705 glutamate and cations in the neuronal transporter EAAC-1, J Biol Chem, vol.706, issue.279, pp.2513-2519, 2004.

A. Leinenweber, J. P. Machtens, B. Begemann, and C. Fahlke, Regulation of Glial Glutamate Transporters by C-terminal Domains, Journal of Biological Chemistry, vol.22, issue.3, pp.1927-1937, 2011.
DOI : 10.1074/jbc.270.30.17668

A. Shouffani and B. Kanner, Cholesterol is required for the reconstruction 711 of the sodium-and chloride-coupled, gamma-aminobutyric acid 712 transporter from rat brain, J Biol Chem, vol.265, pp.6002-6008, 1990.

M. E. Butchbach, G. Tian, H. Guo, and C. L. Lin, Association of Excitatory Amino Acid Transporters, Especially EAAT2, with Cholesterol-rich Lipid Raft Microdomains, Journal of Biological Chemistry, vol.23, issue.33, pp.34388-34396, 2004.
DOI : 10.1083/jcb.141.3.601

B. C. Mcilwain, R. J. Vandenberg, and R. M. Ryan, Transport rates of a 719 glutamate transporter homologue are influenced by the lipid bilayer, p.720

W. A. Fairman, M. S. Sonders, G. H. Murdoch, and S. G. Amara, Arachidonic 722 acid elicits a substrate-gated proton current associated with the 723 glutamate transporter EAAT4, Nat Neurosci, vol.1355, pp.105-11310, 1038.

S. Raunser, Heterologously Expressed GLT-1 Associates in ???200-nm Protein-Lipid Islands, Biophysical Journal, vol.91, issue.10, pp.3718-3726086900, 2006.
DOI : 10.1529/biophysj.106.086900

URL : https://doi.org/10.1529/biophysj.106.086900

T. E. Wales and J. Engen, Hydrogen exchange mass spectrometry for the analysis of protein dynamics, Mass Spectrometry Reviews, vol.120, issue.1, pp.158-170, 2006.
DOI : 10.1002/mas.20064

L. Konermann, J. Pan, and Y. H. Liu, Hydrogen exchange mass spectrometry for studying protein structure and dynamics, Chem. Soc. Rev., vol.5, issue.suppl. 9, pp.1224-733, 2011.
DOI : 10.1002/rcm.1290050415

K. Shimamoto, Characterization of Novel L-threo-??-Benzyloxyaspartate Derivatives, Potent Blockers of the Glutamate Transporters, Molecular Pharmacology, vol.65, issue.4, pp.1008-1015, 2004.
DOI : 10.1124/mol.65.4.1008

N. Watzke and C. Grewer, The anion conductance of the glutamate 739 transporter EAAC1 depends on the direction of glutamate transport, FEBS 740 Lett 503, pp.121-125, 2001.

N. Reyes, S. Oh, and O. Boudker, Binding thermodynamics of a glutamate transporter homolog, Nature Structural & Molecular Biology, vol.276, issue.5, pp.634-6402548, 2013.
DOI : 10.1107/S0907444904019158

T. Kawate and E. Gouaux, Fluorescence-Detection Size-Exclusion Chromatography for Precrystallization Screening of Integral Membrane Proteins, Structure, vol.14, issue.4, pp.673-681, 2006.
DOI : 10.1016/j.str.2006.01.013

P. R. Evans and G. N. Murshudov, How good are my data and what is the resolution?, Acta Crystallographica Section D Biological Crystallography, vol.67, issue.7, pp.1204-1214, 2013.
DOI : 10.1107/S0907444910045749

URL : http://journals.iucr.org/d/issues/2013/07/00/ba5190/ba5190.pdf

A. J. Mccoy, crystallographic software, Journal of Applied Crystallography, vol.40, issue.4, pp.658-67410, 2007.
DOI : 10.1107/S0021889807021206

E. Blanc, Refinement of severely incomplete structures with 758 maximum likelihood in BUSTER-TNT, Acta Crystallogr D Biol Crystallogr, vol.759, issue.60, pp.2210-222110, 2004.

O. 'brien and D. P. , Structural models of intrinsically disordered and 761 calcium-bound folded states of a protein adapted for secretion, Sci Rep, vol.5, issue.762, pp.1422310-1038, 2015.

V. Hourdel, MEMHDX: An interactive tool to expedite the statistical validation and visualization of large HDX-MS datasets, Bioinformatics, pp.765-775, 2016.
DOI : 10.1093/bioinformatics/btw420

URL : https://hal.archives-ouvertes.fr/pasteur-01377055