T. Mettenleiter, Immunobiology of pseudorabies (Aujeszky's Disease), Veterinary Immunology and Immunopathology, vol.54, issue.1-4, pp.221-229, 1996.
DOI : 10.1016/S0165-2427(96)05695-4

L. Pomeranz, A. Reynolds, C. Hengartner, D. Atanasiu, T. Cairns et al., Molecular Biology of Pseudorabies Virus: Impact on Neurovirology and Veterinary Medicine, Microbiology and Molecular Biology Reviews, vol.69, issue.3, pp.462-710800, 2005.
DOI : 10.1128/MMBR.69.3.462-500.2005

A. Nicola, Herpesvirus Entry into Host Cells Mediated by Endosomal Low pH, Traffic, vol.43, issue.Pt 8, pp.965-975, 2016.
DOI : 10.3181/00379727-116-29392

URL : http://onlinelibrary.wiley.com/doi/10.1111/tra.12408/pdf

A. Li, G. Lu, J. Qi, L. Wu, K. Tian et al., Structural basis of nectin-1 recognition by pseudorabies virus glycoprotein D, PLOS Pathogens, vol.50, issue.Pt 5, pp.1006314-717, 2017.
DOI : 10.1371/journal.ppat.1006314.t002

P. Spear, Herpes simplex virus: receptors and ligands for cell entry, Cellular Microbiology, vol.71, issue.5, pp.401-410, 2004.
DOI : 10.1128/JVI.77.17.9695-9699.2003

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1462-5822.2004.00389.x/pdf

A. Vanarsdall, M. Chase, D. Johnson, M. Mullen, K. Haan et al., Human Cytomegalovirus Glycoprotein gO Complexes with gH/gL, Promoting Interference with Viral Entry into Human Fibroblasts but Not Entry into Epithelial Cells, Journal of Virology, vol.85, issue.22, pp.11638-11645375, 2002.
DOI : 10.1128/JVI.05659-11

URL : http://jvi.asm.org/content/85/22/11638.full.pdf

C. Krummenacher, A. Carfi, R. Eisenberg, G. Cohen, K. Sathiyamoorthy et al., Entry of Herpesviruses into Cells: The Enigma Variations, Adv Exp Med Biol Curr Opin Virol Future Virol, vol.790, issue.730, pp.178-19597, 2013.
DOI : 10.1007/978-1-4614-7651-1_10

C. Krummenacher and A. Carfi, Structure of herpes simplex virus glycoprotein D bound 732 to the human receptor nectin-1, PLoS Pathog, vol.7, pp.1002277-733, 2011.

E. Lazear, J. Whitbeck, Y. Zuo, A. Carfi, G. Cohen et al., Induction of conformational changes at the N-terminus of herpes simplex virus glycoprotein D upon binding to HVEM and nectin-1, Virology, vol.448, issue.736, pp.185-195, 2014.
DOI : 10.1016/j.virol.2013.10.019

T. Gianni, M. Amasio, and G. Campadelli-fiume, Herpes Simplex Virus gD Forms Distinct Complexes with Fusion Executors gB and gH/gL in Part through the C-terminal Profusion Domain, Journal of Biological Chemistry, vol.66, issue.26, pp.17370-17382, 2009.
DOI : 10.1128/JVI.01364-07

D. Atanasiu, W. Saw, G. Cohen, and R. Eisenberg, Cascade of events governing cell- 740 cell fusion induced by herpes simplex virus glycoproteins gD, gH/gL, and gB, J Virol, vol.741, issue.742, pp.12292-12299, 2010.

J. Schmidt, B. Klupp, A. Karger, and T. Mettenleiter, Adaptability in herpesviruses: 743 glycoprotein D-independent infectivity of pseudorabies virus 24. 745 18. Rauh I, Mettenleiter TC. 1991. Pseudorabies virus glycoproteins gII and gp50 are 746 essential for virus penetration, Journal of virology J Virol, vol.71, issue.747, pp.17-7445348, 1997.

B. Peeters, N. De-wind, R. Broer, A. Gielkens, and R. Moormann, Glycoprotein H of 748 pseudorabies virus is essential for entry and cell-to-cell spread of the virus, J Virol, vol.749, issue.20, pp.3888-3892, 1992.

B. Klupp, W. Fuchs, E. Weiland, and T. Mettenleiter, Pseudorabies virus glycoprotein 751 L is necessary for virus infectivity but dispensable for virion localization of glycoprotein 752 H, J Virol, vol.71, issue.21, pp.7687-7695, 1997.

C. Schröter, M. Vallbracht, J. Altenschmidt, S. Kargoll, W. Fuchs et al., ABSTRACT, Journal of Virology, vol.90, issue.5, pp.2264-2272
DOI : 10.1128/JVI.02739-15

S. Roche, S. Bressanelli, F. Rey, and Y. Gaudin, Crystal Structure of the Low-pH Form of the Vesicular Stomatitis Virus Glycoprotein G, Science, vol.313, issue.5784, pp.187-191, 2006.
DOI : 10.1126/science.1127683

J. Kadlec, S. Loureiro, N. Abrescia, D. Stuart, and I. Jones, The postfusion structure of 759 baculovirus gp64 supports a unified view of viral fusion machines, Nat Struct Mol Biol, vol.760, issue.761, pp.1024-1030, 2008.

S. Harrison, Viral membrane fusion Virology 479-480:498-507. 762 25 Mechanics of membrane fusion, Chernomordik LV, Kozlov MM. Nat Struct Mol Biol, vol.763, issue.764, pp.675-683, 2008.

E. Heldwein, H. Lou, F. Bender, G. Cohen, R. Eisenberg et al., Crystal Structure of Glycoprotein B from Herpes Simplex Virus 1, Science, vol.313, issue.5784, pp.217-220, 2006.
DOI : 10.1126/science.1126548

URL : http://crystal.harvard.edu/PDFs/heldwein_science_july_2006.pdf

M. Backovic, R. Longnecker, and T. Jardetzky, Structure of a trimeric, p.767, 2009.

S. Chandramouli, C. Ciferri, P. Nikitin, S. Calo, R. Gerrein et al., Structure of HCMV glycoprotein B in the postfusion conformation bound to a neutralizing human antibody, Nature Communications, vol.62, issue.771, pp.8176-8205, 2015.
DOI : 10.1128/JVI.02710-06

B. Glycoprotein, T. Zeev-ben-mordehai, D. Vasishtan, H. Duran, A. Vollmer et al., Two distinct trimeric 775 conformations of natively membrane-anchored full-length herpes simplex virus 1 776 glycoprotein B, PLoS Pathog Proc Natl Acad Sci, vol.11, issue.777, pp.4176-4181, 2016.

S. Roche, F. Rey, Y. Gaudin, and S. Bressanelli, Structure of the Prefusion Form of the Vesicular Stomatitis Virus Glycoprotein G, Science, vol.315, issue.5813, pp.843-848, 2007.
DOI : 10.1126/science.1135710

URL : https://hal.archives-ouvertes.fr/hal-00167649

J. Gallagher, D. Atanasiu, W. Saw, M. Paradisgarten, J. Whitbeck et al., Cohen 780 GH. 2014. Functional fluorescent protein insertions in herpes simplex virus gB report on 781 gB conformation before and after execution of membrane fusion 784 Crystal structure of the conserved herpesvirus fusion regulator complex gH-gL, Struct Mol Biol, vol.17, issue.786, pp.785882-888, 2010.

. Epstein-barr-virus, EBV) glycoprotein H/glycoprotein L (gH/gL) complex, Proc Natl Acad, p.788

Y. Xing, S. Oliver, T. Nguyen, C. Ciferri, A. Nandi et al., A site of varicella-zoster virus vulnerability identified by structural studies of neutralizing antibodies bound to the glycoprotein complex gHgL, Proceedings of the National Academy of Sciences, vol.71, issue.3, pp.6056-6061, 2015.
DOI : 10.1128/JVI.00457-09

G. Bricogne, T. Mettenleiter, and F. Rey, Structure of a core fragment of glycoprotein 795 H from pseudorabies virus in complex with antibody, Proc Natl Acad Sci, vol.107, issue.797, pp.22635-22640, 2010.

E. Heldwein, 2016. gH/gL supercomplexes at early stages of herpesvirus entry, Curr 798 Opin Virol, vol.18, issue.799, pp.1-8

D. Atanasiu, W. Saw, G. Cohen, and R. Eisenberg, Cascade of Events Governing Cell-Cell Fusion Induced by Herpes Simplex Virus Glycoproteins gD, gH/gL, and gB, Journal of Virology, vol.84, issue.23, pp.12292-12299, 2010.
DOI : 10.1128/JVI.01700-10

URL : http://jvi.asm.org/content/84/23/12292.full.pdf

J. White, S. Delos, M. Brecher, and K. Schornberg, Structures and mechanisms of 803 viral membrane fusion proteins: multiple variations on a common theme, Crit Rev Biochem Mol Biol, vol.804, issue.805, pp.189-219, 2008.

H. Ito, S. Watanabe, A. Sanchez, M. Whitt, and Y. Kawaoka, Mutational analysis of the 806 putative fusion domain of Ebola virus glycoprotein, J Virol, vol.73, issue.807, pp.8907-8912, 1999.

B. Apellaniz, N. Huarte, E. Largo, and J. Nieva, The three lives of viral fusion peptides, Chemistry and Physics of Lipids, vol.181, p.808, 2014.
DOI : 10.1016/j.chemphyslip.2014.03.003

S. Bressanelli, K. Stiasny, S. Allison, E. Stura, S. Duquerroy et al., Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane 811 fusion conformation, Embo J, vol.810, issue.812, pp.728-738, 2004.

G. Bricogne and F. Rey, Glycoprotein organization of Chikungunya virus particles 814 revealed by X-ray crystallography, Nature, vol.468, issue.815, pp.709-712, 2010.

R. Dubois, M. Vaney, M. Tortorici, R. Kurdi, G. Barba-spaeth et al., 816 Functional and evolutionary insight from the crystal structure of rubella virus protein E1, Nature, vol.817, issue.818, pp.552-556, 2013.

M. Dessau and Y. Modis, Crystal structure of glycoprotein C from Rift Valley fever virus, Proceedings of the National Academy of Sciences, vol.38, issue.suppl_2, pp.1696-1701, 2013.
DOI : 10.1093/nar/gkq366

G. Tortorici, M. Jestin, J. England, P. Tischler, N. Rey et al., Mechanistic Insight into 822 Bunyavirus-Induced Membrane Fusion from Structure-Function Analyses of the 823 Hantavirus Envelope Glycoprotein Gc, PLoS Pathog, vol.12, issue.824, pp.1005813-1005860, 2016.

X. Sun, S. Belouzard, and G. Whittaker, Molecular architecture of the bipartite fusion 825 loops of vesicular stomatitis virus glycoprotein G, a class III viral fusion protein, J Biol Chem, vol.826, issue.827, pp.6418-6427, 2008.

E. Baquero, A. Albertini, and Y. Gaudin, Recent mechanistic and structural insights on class III viral fusion glycoproteins, Current Opinion in Structural Biology, vol.33, issue.829, pp.52-60, 2015.
DOI : 10.1016/j.sbi.2015.07.011

URL : https://hal.archives-ouvertes.fr/hal-01199588

M. Backovic, G. Leser, R. Lamb, R. Longnecker, and T. Jardetzky, Characterization of 830 EBV gB indicates properties of both class I and class II viral fusion proteins, Virology, vol.831, issue.832, pp.102-113, 2007.

S. Sharma, T. Wisner, D. Johnson, and E. Heldwein, HCMV gB shares structural and functional properties with gB proteins from other herpesviruses, Virology, vol.435, issue.2, pp.239-249, 2013.
DOI : 10.1016/j.virol.2012.09.024

URL : https://doi.org/10.1016/j.virol.2012.09.024

M. Backovic, T. Jardetzky, R. Longnecker, B. Hannah, E. Heldwein et al., Hydrophobic residues that form putative 835 fusion loops of Epstein-Barr virus glycoprotein B are critical for fusion activity Mutational 838 evidence of internal fusion loops in herpes simplex virus glycoprotein B, J Virol J Virol, vol.836, issue.840, pp.9596-96004858, 2007.

E. Lin and P. Spear, Random linker-insertion mutagenesis to identify functional domains of herpes simplex virus type 1 glycoprotein B, Proceedings of the National Academy of Sciences, vol.101, issue.34, pp.13140-13145, 2007.
DOI : 10.1073/pnas.0404211101

URL : http://www.pnas.org/content/104/32/13140.full.pdf

R. Eisenberg, Dual split protein-based fusion assay reveals that mutations to 845 herpes simplex virus (HSV) glycoprotein gB alter the kinetics of cell-cell fusion induced 846 by HSV entry glycoproteins, J Virol, vol.87, issue.847, pp.11332-11345, 2013.

U. Maurer, T. Zeev-ben-mordehai, A. Pandurangan, T. Cairns, B. Hannah et al., The Structure of Herpesvirus Fusion Glycoprotein B-Bilayer Complex Reveals the Protein-Membrane and Lateral Protein-Protein Interaction, Structure, vol.21, issue.8, pp.1396-1405, 2013.
DOI : 10.1016/j.str.2013.05.018

S. Yang, A. Kreutzberger, J. Lee, V. Kiessling, and L. Tamm, The role of cholesterol in membrane fusion, Chemistry and Physics of Lipids, vol.199, issue.856, pp.136-143, 2016.
DOI : 10.1016/j.chemphyslip.2016.05.003

X. Ren, J. Yin, G. Li, G. Herrler, H. Nauwynck et al., Cholesterol Dependence of Pseudorabies Herpesvirus Entry, Current Microbiology, vol.378, issue.1, pp.261-266, 2008.
DOI : 10.1007/s00284-010-9700-8

G. Wudiri, S. Pritchard, H. Li, J. Liu, H. Aguilar et al., Molecular Requirement for Sterols in Herpes Simplex Virus Entry and Infectivity, Journal of Virology, vol.88, issue.23, pp.13918-863, 2014.
DOI : 10.1128/JVI.01615-14

URL : http://jvi.asm.org/content/88/23/13918.full.pdf

F. Bender, J. Whitbeck, M. Ponce-de-leon, H. Lou, R. Eisenberg et al., Specific Association of Glycoprotein B with Lipid Rafts during Herpes Simplex Virus Entry, Journal of Virology, vol.77, issue.17, pp.9542-9552, 2003.
DOI : 10.1128/JVI.77.17.9542-9552.2003

R. Tawar, B. Baron, R. B. England, P. Persson, M. Martin et al., The 869 disulfide bonds in glycoprotein E2 of hepatitis C virus reveal the tertiary organization of 870 the molecule, PLoS Pathog, vol.6, issue.871, pp.1000762-63, 2010.

M. Backovic and T. Krey, Stable Drosophila Cell Lines: An Alternative Approach to Exogenous Protein Expression, Methods Mol Biol, vol.1350, issue.873, pp.349-358, 2016.
DOI : 10.1007/978-1-4939-3043-2_17

J. Culp, H. Johansen, B. Hellmig, J. Beck, T. Matthews et al., 874 Regulated expression allows high level production and secretion of HIV-1 gp120 875 envelope glycoprotein in Drosophila Schneider cells, Biotechnology (N Y), vol.9, issue.876, pp.173-177, 1991.

T. Gianni, R. Fato, C. Bergamini, G. Lenaz, and G. Campadelli-fiume, Hydrophobic ??-Helices 1 and 2 of Herpes Simplex Virus gH Interact with Lipids, and Their Mimetic Peptides Enhance Virus Infection and Fusion, Journal of Virology, vol.80, issue.16, pp.8190-8198, 2006.
DOI : 10.1128/JVI.00504-06

K. Sugihara, M. Chami, I. Derenyi, J. Voros, and T. Zambelli, Directed Self-Assembly of Lipid Nanotubes from Inverted Hexagonal Structures, ACS Nano, vol.6, issue.8, pp.6626-6632, 2012.
DOI : 10.1021/nn300557s

URL : http://angel.elte.hu/%7Ederenyi/publ/2012_ACS_Nano_lipid_nanotubes.pdf

W. Wimley and S. White, Experimentally determined hydrophobicity scale for proteins at membrane interfaces, Nature Structural & Molecular Biology, vol.1, issue.10, pp.842-848, 1996.
DOI : 10.1016/0005-2736(86)90302-0

J. Maccallum, W. Bennett, and D. Tieleman, Distribution of Amino Acids in a Lipid Bilayer from Computer Simulations, Biophysical Journal, vol.94, issue.9, pp.3393-3404, 2008.
DOI : 10.1529/biophysj.107.112805

S. White and W. Wimley, MEMBRANE PROTEIN FOLDING AND STABILITY: Physical Principles, Annual Review of Biophysics and Biomolecular Structure, vol.28, issue.1, pp.319-365, 1999.
DOI : 10.1146/annurev.biophys.28.1.319

B. Klupp, R. Nixdorf, T. Mettenleiter, B. Bruun, T. Minson et al., Pseudorabies Virus Glycoprotein M Inhibits Membrane Fusion, Journal of Virology, vol.74, issue.15, pp.6760-6768873, 1998.
DOI : 10.1128/JVI.74.15.6760-6768.2000

URL : http://jvi.asm.org/content/74/15/6760.full.pdf

J. Dodge, G. Phillips, J. Virtanen, K. Cheng, and P. Somerharju, Composition of phospholipids and of phospholipid fatty 897 acids and aldehydes in human red cells Phospholipid composition of the 899 mammalian red cell membrane can be rationalized by a superlattice model, J Lipid Res Proc Natl, vol.8, issue.898, pp.667-675, 1967.

A. Sci, U. Kalvodova, L. Sampaio, J. Cordo, S. Ejsing et al., The 902 lipidomes of vesicular stomatitis virus, semliki forest virus, and the host plasma 903 membrane analyzed by quantitative shotgun mass spectrometry Effects of truncation of the 905 carboxy terminus of pseudorabies virus glycoprotein B on infectivity, J Virol J Virol, vol.95, issue.907, pp.4964-49697996, 2000.

D. Dory, M. Remond, V. Beven, R. Cariolet, M. Backovic et al., Pseudorabies virus glycoprotein B can be used to carry foot and mouth disease antigens in DNA vaccination of pigs, Antiviral Research, vol.81, issue.3, pp.217-225, 2009.
DOI : 10.1016/j.antiviral.2008.11.005

URL : https://hal.archives-ouvertes.fr/hal-00404242

T. Rog and I. Vattulainen, Cholesterol, sphingolipids, and glycolipids: What do we know about their role in raft-like membranes?, Chemistry and Physics of Lipids, vol.184, issue.912, pp.82-104, 2014.
DOI : 10.1016/j.chemphyslip.2014.10.004

S. Yang, V. Kiessling, and L. Tamm, Line tension at lipid phase boundaries as driving force for HIV fusion peptide-mediated fusion, Nature Communications, vol.284, issue.914, pp.11401-81, 2016.
DOI : 10.1074/jbc.M109.047381

URL : http://www.nature.com/articles/ncomms11401.pdf

G. Feigenson, Phase behavior of lipid mixtures, Nature Chemical Biology, vol.83, issue.11, pp.560-563, 2006.
DOI : 10.1016/S0304-4157(00)00016-2

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2685072/pdf

S. Oliver, M. Sommer, L. Zerboni, J. Rajamani, C. Grose et al., Mutagenesis of Varicella-Zoster Virus Glycoprotein B: Putative Fusion Loop Residues Are Essential for Viral Replication, and the Furin Cleavage Motif Contributes to Pathogenesis in Skin Tissue In Vivo, Journal of Virology, vol.83, issue.15, pp.7495-7506, 2009.
DOI : 10.1128/JVI.00400-09

J. Sorem and R. Longnecker, Cleavage of Epstein-Barr virus glycoprotein B is required for full function in cell-cell fusion with both epithelial and B cells, Journal of General Virology, vol.90, issue.3, pp.591-595, 2009.
DOI : 10.1099/vir.0.007237-0

K. Okazaki, Proteolytic cleavage of glycoprotein B is dispensable for in vitro 922 replication, but required for syncytium formation of pseudorabies virus, J Gen Virol, vol.923, issue.924, pp.1859-1865, 2007.

T. Strive, E. Borst, M. Messerle, K. Radsak, A. Kopp et al., Proteolytic processing of human 925 cytomegalovirus glycoprotein B is dispensable for viral growth in culture Proteolytic cleavage of bovine 928 herpesvirus 1 (BHV-1) glycoprotein gB is not necessary for its function in BHV-1 or 929 pseudorabies virus, J Virol J Virol, vol.926, issue.930, pp.1252-12641667, 1994.

S. Stampfer, H. Lou, G. Cohen, R. Eisenberg, and E. Heldwein, Structural Basis of Local, pH-Dependent Conformational Changes in Glycoprotein B from Herpes Simplex Virus Type 1, Journal of Virology, vol.84, issue.24, pp.12924-12933, 2010.
DOI : 10.1128/JVI.01750-10

B. Peeters, N. De-wind, M. Hooisma, F. Wagenaar, A. Gielkens et al., 934 Pseudorabies virus envelope glycoproteins gp50 and gII are essential for virus 935 penetration, but only gII is involved in membrane fusion, J Virol, vol.66, issue.936, pp.894-905, 1992.

K. Stiasny, C. Koessl, F. Heinz, S. Yang, K. Melikov et al., Involvement of lipids in different steps of the 937 flavivirus fusion mechanism Dengue virus 939 ensures its fusion in late endosomes using compartment-specific lipids:e1001131. 941 91. Guardado-Calvo P, Rey FA. 2017. The Envelope Proteins of the Bunyavirales Multiphasic effects of cholesterol on 944 influenza fusion kinetics reflect multiple mechanistic roles, J Virol PLoS Pathog Adv Virus 942 Res Biophys J, vol.77, issue.945, pp.7856-786283, 2003.

A. Lai, A. Moorthy, Y. Li, and L. Tamm, Fusion Activity of HIV gp41 Fusion Domain Is Related to Its Secondary Structure and Depth of Membrane Insertion in a Cholesterol-Dependent Fashion, Journal of Molecular Biology, vol.418, issue.1-2, pp.3-15, 2012.
DOI : 10.1016/j.jmb.2012.02.010

R. Kirkpatrick, S. Ganguly, M. Angelichio, S. Griego, A. Shatzman et al., via a BiP-mediated Pathway, Journal of Biological Chemistry, vol.52, issue.34, pp.19800-1980511272, 1995.
DOI : 10.1146/annurev.iy.06.040188.002121

A. Mccoy, R. Grosse-kunstleve, P. Adams, M. Winn, L. Storoni et al., crystallographic software, Journal of Applied Crystallography, vol.40, issue.4, pp.658-674, 2007.
DOI : 10.1107/S0021889807021206

C. Vonrhein and T. Womack, BUSTER, v2.8.0. Global Phasing Ltd, p.99, 2009.

J. Castile and K. Taylor, Factors affecting the size distribution of liposomes produced by freeze???thaw extrusion, International Journal of Pharmaceutics, vol.188, issue.1, pp.87-95, 1999.
DOI : 10.1016/S0378-5173(99)00207-0

T. Mettenleiter, Glycoprotein gIII deletion mutants of pseudorabies virus are impaired in virus entry, Virology, vol.171, issue.2, pp.623-625, 1989.
DOI : 10.1016/0042-6822(89)90635-1

S. Pavlova, J. Veits, G. Keil, T. Mettenleiter, and W. Fuchs, Protection of chickens against H5N1 highly pathogenic avian influenza virus infection by live vaccination with infectious laryngotracheitis virus recombinants expressing H5 hemagglutinin and N1 neuraminidase, Vaccine, vol.27, issue.5, pp.773-785, 2009.
DOI : 10.1016/j.vaccine.2008.11.033

W. Delano, The PyMOL Molecular Graphics System, p.976, 2002.

D. Eisenberg, E. Schwarz, M. Komaromy, and R. Wall, Analysis of membrane and surface protein sequences with the hydrophobic moment plot, Journal of Molecular Biology, vol.179, issue.1, pp.125-142, 1984.
DOI : 10.1016/0022-2836(84)90309-7

N. Baker, D. Sept, S. Joseph, M. Holst, and J. Mccammon, Electrostatics of nanosystems: Application to microtubules and the ribosome, Proceedings of the National Academy of Sciences, vol.377, issue.6547, pp.10037-10041, 2001.
DOI : 10.1038/377309a0

H. Hasegawa and L. Holm, Advances and pitfalls of protein structural alignment, Current Opinion in Structural Biology, vol.19, issue.3, pp.341-348, 2009.
DOI : 10.1016/j.sbi.2009.04.003

M. Remmert, J. Soding, J. Thompson, and D. Higgins, Fast, scalable generation of 985 high-quality protein multiple sequence alignments using Clustal Omega, Mol Syst Biol, vol.986, pp.7-539, 2011.

P. Gouet, E. Courcelle, D. Stuart, and F. Metoz, ESPript: analysis of multiple sequence alignments in PostScript, Bioinformatics, vol.15, issue.4, pp.305-308, 1999.
DOI : 10.1093/bioinformatics/15.4.305

URL : https://hal.archives-ouvertes.fr/hal-00314288