S. Grünberg and S. Hahn, Structural insights into transcription initiation by RNA polymerase II, Trends in Biochemical Sciences, vol.38, issue.12, pp.603-611, 2013.
DOI : 10.1016/j.tibs.2013.09.002

E. Kandiah, S. Trowitzsch, K. Gupta, M. Haffke, and I. Berger, More pieces to the puzzle: recent structural insights into class II transcription initiation, Current Opinion in Structural Biology, vol.24, pp.91-97, 2014.
DOI : 10.1016/j.sbi.2013.12.005

M. Thomas and C. Chiang, The General Transcription Machinery and General Cofactors, Critical Reviews in Biochemistry and Molecular Biology, vol.68, issue.3, pp.105-178, 2006.
DOI : 10.1073/pnas.68.11.2861

URL : http://classes.biology.ucsd.edu/old.web.classes/bggn220.FA06/Oct.16a.Chiang.pdf

B. Dynlacht, T. Hoey, and R. Tjian, Isolation of coactivators associated with the TATA-binding protein that mediate transcriptional activation, Cell, vol.66, issue.3, pp.563-576, 1991.
DOI : 10.1016/0092-8674(81)90019-2

B. Pugh, Control of gene expression through regulation of the TATA-binding protein, Gene, vol.255, issue.1, pp.1-14, 2000.
DOI : 10.1016/S0378-1119(00)00288-2

T. Sikorski and S. Buratowski, The basal initiation machinery: beyond the general transcription factors, Current Opinion in Cell Biology, vol.21, issue.3, pp.344-351, 2009.
DOI : 10.1016/j.ceb.2009.03.006

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2692371/pdf

H. Kwak and J. Lis, Control of Transcriptional Elongation, Annual Review of Genetics, vol.47, issue.1, pp.483-508, 2013.
DOI : 10.1146/annurev-genet-110711-155440

P. Wei, M. Garber, S. Fang, W. Fischer, and K. Jones, A Novel CDK9-Associated C-Type Cyclin Interacts Directly with HIV-1 Tat and Mediates Its High-Affinity, Loop-Specific Binding to TAR RNA, Cell, vol.92, issue.4, pp.451-462, 1998.
DOI : 10.1016/S0092-8674(00)80939-3

L. Larivière, M. Seizl, and P. Cramer, A structural perspective on Mediator function, Current Opinion in Cell Biology, vol.24, issue.3, pp.305-313, 2012.
DOI : 10.1016/j.ceb.2012.01.007

Z. Poss, C. Ebmeier, and D. Taatjes, The Mediator complex and transcription regulation, Critical Reviews in Biochemistry and Molecular Biology, vol.15, issue.6, pp.575-608, 2013.
DOI : 10.1074/jbc.272.41.25500

URL : http://www.tandfonline.com/doi/pdf/10.3109/10409238.2013.840259?needAccess=true

N. Yudkovsky, J. Ranish, and S. Hahn, A transcription reinitiation intermediate that is stabilized by activator, Nature, vol.408, pp.225-229, 2000.

W. Reeves and S. Hahn, Activator-Independent Functions of the Yeast Mediator Sin4 Complex in Preinitiation Complex Formation and Transcription Reinitiation, Molecular and Cellular Biology, vol.23, issue.1, pp.349-358, 2003.
DOI : 10.1128/MCB.23.1.349-358.2003

J. Chubb, T. Trcek, S. Shenoy, and R. Singer, Transcriptional Pulsing of a Developmental Gene, Current Biology, vol.16, issue.10, pp.1018-1025, 2006.
DOI : 10.1016/j.cub.2006.03.092

B. Munsky, G. Neuert, and A. Van-oudenaarden, Using Gene Expression Noise to Understand Gene Regulation, Science, vol.81, issue.4, pp.183-187, 2012.
DOI : 10.1021/j100540a008

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3358231/pdf

A. Raj, C. Peskin, D. Tranchina, D. Vargas, and S. Tyagi, Stochastic mRNA Synthesis in Mammalian Cells, PLoS Biology, vol.280, issue.10, p.309, 2006.
DOI : 10.1371/journal.pbio.0040309.sv002

URL : https://doi.org/10.1371/journal.pbio.0040309

A. Raj and A. Van-oudenaarden, Nature, Nurture, or Chance: Stochastic Gene Expression and Its Consequences, Cell, vol.135, issue.2, pp.216-226, 2008.
DOI : 10.1016/j.cell.2008.09.050

URL : https://doi.org/10.1016/j.cell.2008.09.050

W. Blake, Phenotypic Consequences of Promoter-Mediated Transcriptional Noise, Molecular Cell, vol.24, issue.6, pp.853-865, 2006.
DOI : 10.1016/j.molcel.2006.11.003

A. Raj, S. Rifkin, E. Andersen, and A. Van-oudenaarden, Variability in gene expression underlies incomplete penetrance, Nature, vol.460, issue.7283, pp.913-918, 2010.
DOI : 10.1016/j.bbagrm.2008.07.013

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2836165/pdf

K. Miller-jensen, R. Skupsky, P. Shah, A. Arkin, and D. Schaffer, Genetic Selection for Context-Dependent Stochastic Phenotypes: Sp1 and TATA Mutations Increase Phenotypic Noise in HIV-1 Gene Expression, PLoS Computational Biology, vol.72, issue.7, p.1003135, 2013.
DOI : 10.1371/journal.pcbi.1003135.s008

A. Weinberger and L. Weinberger, Stochastic Fate Selection in HIV-Infected Patients, Cell, vol.155, issue.3, pp.497-499, 2013.
DOI : 10.1016/j.cell.2013.09.039

URL : https://doi.org/10.1016/j.cell.2013.09.039

L. Weinberger, J. Burnett, J. Toettcher, A. Arkin, and D. Schaffer, Stochastic Gene Expression in a Lentiviral Positive-Feedback Loop: HIV-1 Tat Fluctuations Drive Phenotypic Diversity, Cell, vol.122, issue.2, pp.169-182, 2005.
DOI : 10.1016/j.cell.2005.06.006

Y. Ho, Replication-Competent Noninduced Proviruses in the Latent Reservoir Increase Barrier to HIV-1 Cure, Cell, vol.155, issue.3, pp.540-551, 2013.
DOI : 10.1016/j.cell.2013.09.020

A. Sanchez and I. Golding, Genetic Determinants and Cellular Constraints in Noisy Gene Expression, Science, vol.292, issue.1, pp.1188-1193, 2013.
DOI : 10.1006/jmbi.1999.3056

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4045091/pdf

D. Fusco, Single mRNA Molecules Demonstrate Probabilistic Movement in Living Mammalian Cells, Current Biology, vol.13, issue.2, pp.161-167, 2003.
DOI : 10.1016/S0960-9822(02)01436-7

URL : https://doi.org/10.1016/s0960-9822(02)01436-7

A. Newhart and S. Janicki, Seeing Is Believing: Visualizing Transcriptional Dynamics in Single Cells, Journal of Cellular Physiology, vol.13, issue.3, pp.259-265, 2014.
DOI : 10.1038/ncb2341

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4089093/pdf

E. Querido and P. Chartrand, Using Fluorescent Proteins to Study mRNA Trafficking in Living Cells, Methods Cell Biol, vol.85, pp.273-292, 2008.
DOI : 10.1016/S0091-679X(08)85012-1

J. Buenrostro, Quantitative analysis of RNA-protein interactions on a massively parallel array reveals biophysical and evolutionary landscapes, Nature Biotechnology, vol.7, issue.6, pp.562-568, 2014.
DOI : 10.1038/nmeth.2688

S. Boireau, The transcriptional cycle of HIV-1 in real-time and live cells, The Journal of Cell Biology, vol.432, issue.2, pp.291-304, 2007.
DOI : 10.1016/j.molcel.2005.11.002

G. Zhang, M. Zapp, G. Yan, and M. Green, Localization of HIV-1 RNA in mammalian nuclei, The Journal of Cell Biology, vol.135, issue.1, pp.9-18, 1996.
DOI : 10.1083/jcb.135.1.9

C. Danko, Signaling Pathways Differentially Affect RNA Polymerase II Initiation, Pausing, and Elongation Rate in Cells, Molecular Cell, vol.50, issue.2, pp.212-222, 2013.
DOI : 10.1016/j.molcel.2013.02.015

X. Darzacq, In vivo dynamics of RNA polymerase II transcription, Nature Structural & Molecular Biology, vol.6, issue.9, pp.796-806, 2007.
DOI : 10.1109/TAC.1974.1100705

I. Jonkers, H. Kwak, and J. Lis, Author response image 1. Author response, eLife, vol.97, p.2407, 2014.
DOI : 10.7554/eLife.02407.025

R. Martin, J. Rino, C. Carvalho, T. Kirchhausen, and M. Carmo-fonseca, Live-Cell Visualization of Pre-mRNA Splicing with Single-Molecule Sensitivity, Cell Reports, vol.4, issue.6, pp.1144-1155, 2013.
DOI : 10.1016/j.celrep.2013.08.013

K. Anamika, A. `. Gyenis, and L. Tora, How to stop, Transcription, vol.4, issue.1, pp.7-12, 2013.
DOI : 10.1074/jbc.M306304200

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3644043/pdf

L. Core, J. Waterfall, and J. Lis, Nascent RNA Sequencing Reveals Widespread Pausing and Divergent Initiation at Human Promoters, Science, vol.454, issue.30, pp.1845-1848, 2008.
DOI : 10.1073/pnas.0701635104

URL : http://science.sciencemag.org/content/sci/322/5909/1845.full.pdf

A. Brass, Identification of Host Proteins Required for HIV Infection Through a Functional Genomic Screen, Science, vol.317, issue.5840, pp.921-926, 2008.
DOI : 10.1126/science.1143767

R. König, Global Analysis of Host-Pathogen Interactions that Regulate Early-Stage HIV-1 Replication, Cell, vol.135, issue.1, pp.49-60, 2008.
DOI : 10.1016/j.cell.2008.07.032

A. Ruiz, Characterization of the Influence of Mediator Complex in HIV-1 Transcription, Journal of Biological Chemistry, vol.17, issue.40, pp.27655-27676, 2014.
DOI : 10.1128/JVI.03046-12

T. Van-opijnen, J. Kamoschinski, R. Jeeninga, and B. Berkhout, The Human Immunodeficiency Virus Type 1 Promoter Contains a CATA Box Instead of a TATA Box for Optimal Transcription and Replication, Journal of Virology, vol.78, issue.13, pp.6883-6890, 2004.
DOI : 10.1128/JVI.78.13.6883-6890.2004

L. Savinkova, An Experimental Verification of the Predicted Effects of Promoter TATA-Box Polymorphisms Associated with Human Diseases on Interactions between the TATA Boxes and TATA-Binding Protein, PLoS ONE, vol.277, issue.1, p.54626, 2013.
DOI : 10.1371/journal.pone.0054626.t001

F. Harper and F. Puvion-dutilleul, Non-nucleolar transcription complexes of rat liver as revealed by spreading isolated nuclei, J. Cell Sci, vol.40, pp.181-192, 1979.

C. Laird and W. Chooi, Morphology of transcription units in Drosophila melanogaster, Chromosoma, vol.58, pp.192-218, 1976.

S. Mcknight and O. J. Miller, Post-replicative nonribosomal transcription units in D. melanogaster embryos, Cell, vol.17, pp.551-563, 1979.

J. Levsky, S. Shenoy, R. Pezo, and R. Singer, Single-Cell Gene Expression Profiling, Science, vol.297, issue.5582, pp.836-840, 2002.
DOI : 10.1126/science.1072241

A. Senecal, Transcription Factors Modulate c-Fos Transcriptional Bursts, Cell Reports, vol.8, issue.1, pp.75-83, 2014.
DOI : 10.1016/j.celrep.2014.05.053

URL : https://hal.archives-ouvertes.fr/hal-01312884

P. De-graaf, Chromatin interaction of TATA-binding protein is dynamically regulated in human cells, Journal of Cell Science, vol.123, issue.15, pp.2663-2671, 2010.
DOI : 10.1242/jcs.064097

D. Hawley and R. Roeder, Functional steps in transcription initiation and reinitiation from the major late promoter in a HeLa nuclear extract, J. Biol. Chem, vol.262, pp.3452-3461, 1987.

K. Struhl, Chromatin Structure and RNA Polymerase II Connection: Implications for Transcription, Cell, vol.84, issue.2, pp.179-182, 1996.
DOI : 10.1016/S0092-8674(00)80970-8

URL : https://doi.org/10.1016/s0092-8674(00)80970-8

D. Yean and J. Gralla, Transcription reinitiation rate: a special role for the TATA box., Molecular and Cellular Biology, vol.17, issue.7, pp.3809-3816, 1997.
DOI : 10.1128/MCB.17.7.3809

P. Thomen, T7 RNA Polymerase Studied by Force Measurements Varying Cofactor Concentration, Biophysical Journal, vol.95, issue.5, pp.2423-2433, 2008.
DOI : 10.1529/biophysj.107.125096

URL : https://hal.archives-ouvertes.fr/hal-00333038

F. Kouzine, Transcription-dependent dynamic supercoiling is a short-range genomic force, Nature Structural & Molecular Biology, vol.268, issue.3, pp.396-403, 2013.
DOI : 10.1186/gb-2004-5-11-r87

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3594045/pdf

K. Matsumoto and S. Hirose, Visualization of unconstrained negative supercoils of DNA on polytene chromosomes of Drosophila, Journal of Cell Science, vol.117, issue.17, pp.3797-3805, 2004.
DOI : 10.1242/jcs.01225

S. Chong, C. Chen, H. Ge, and X. Xie, Mechanism of Transcriptional Bursting in Bacteria, Cell, vol.158, issue.2, pp.314-326, 2014.
DOI : 10.1016/j.cell.2014.05.038

J. Newman, Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise, Nature, vol.99, issue.7095, pp.840-846, 2006.
DOI : 10.1128/MCB.19.8.5279

T. Lionnet, A transgenic mouse for in vivo detection of endogenous labeled mRNA, Nature Methods, vol.82, issue.2, pp.165-170, 2011.
DOI : 10.1016/S0006-3495(02)75618-X

E. Bertrand, Localization of ASH1 mRNA Particles in Living Yeast, Molecular Cell, vol.2, issue.4, pp.437-445, 1998.
DOI : 10.1016/S1097-2765(00)80143-4

R. Alexander, RiboSys, a high-resolution, quantitative approach to measure the in vivo kinetics of pre-mRNA splicing and 3'-end processing in Saccharomyces cerevisiae, RNA, vol.16, issue.12, pp.2570-2580, 2010.
DOI : 10.1261/rna.2162610

M. Zuker, Mfold web server for nucleic acid folding and hybridization prediction, Nucleic Acids Research, vol.31, issue.13, pp.3406-3415, 2003.
DOI : 10.1093/nar/gkg595

URL : https://academic.oup.com/nar/article-pdf/31/13/3406/9487491/gkg595.pdf

H. Johansson, A thermodynamic analysis of the sequence-specific binding of RNA by bacteriophage MS2 coat protein, Proc. Natl Acad. Sci. USA 95, pp.9244-9249, 1998.
DOI : 10.1002/anie.196603851

J. Garcia and R. Parker, MS2 coat proteins bound to yeast mRNAs block 5' to 3' degradation and trap mRNA decay products: implications for the localization of mRNAs by MS2-MCP system, RNA, vol.21, issue.8, pp.1393-1395, 2015.
DOI : 10.1261/rna.051797.115

U. Schmidt, Real-time imaging of cotranscriptional splicing reveals a kinetic model that reduces noise: implications for alternative splicing regulation, The Journal of Cell Biology, vol.8, issue.5, pp.819-829, 2011.
DOI : 10.1093/emboj/20.10.2564

F. Mueller, FISH-quant: automatic counting of transcripts in 3D FISH images, Nature Methods, vol.10, issue.4, pp.277-278, 2013.
DOI : 10.1083/jcb.200706018

URL : https://hal.archives-ouvertes.fr/pasteur-01622707

D. Thomann, D. Rines, P. Sorger, and G. Danuser, Automatic fluorescent tag detection in 3D with super-resolution: application to the analysis of chromosome movement, Journal of Microscopy, vol.208, issue.1, pp.49-64, 2002.
DOI : 10.1046/j.1365-2818.2002.01066.x