M. J. Gardner, Genome sequence of the human malaria parasite Plasmodium falciparum, Nature, vol.241, issue.6906, pp.498-51110, 2002.
DOI : 10.1038/nature01099

A. Scherf, J. J. Lopez-rubio, and L. Riviere, Antigenic variation in Plasmodium falciparum Annual review of microbiology 62, pp.445-470, 2008.

J. Langhorne, F. M. Ndungu, A. M. Sponaas, and K. Marsh, Immunity to malaria: more questions than answers, Nature Immunology, vol.117, issue.7, pp.725-732, 2008.
DOI : 10.4049/jimmunol.173.6.4066

H. C. Van-der-heyde, D. Huszar, C. Woodhouse, D. D. Manning, and W. Weidanz, The resolution of acute malaria in a definitive model of B cell deficiency, the JHD mouse, Journal of immunology, pp.1950-152, 1994.

E. M. Janssen, CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes, Nature, vol.131, issue.6925, pp.852-85610, 2003.
DOI : 10.1016/0022-1759(91)90325-A

Z. Su and M. M. Stevenson, Central Role of Endogenous Gamma Interferon in Protective Immunity against Blood-Stage Plasmodium chabaudi AS Infection, Infection and Immunity, vol.68, issue.8, pp.4399-4406, 2000.
DOI : 10.1128/IAI.68.8.4399-4406.2000

W. Xu and J. J. Zhang, Stat1-Dependent Synergistic Activation of T-bet for IgG2a Production during Early Stage of B Cell Activation, The Journal of Immunology, vol.175, issue.11, pp.1950-175, 2005.
DOI : 10.4049/jimmunol.175.11.7419

A. M. Sponaas, Migrating monocytes recruited to the spleen play an important role in control of blood stage malaria, Blood, vol.114, issue.27, pp.5522-553110, 2009.
DOI : 10.1182/blood-2009-04-217489

S. J. Waddell, Dissecting Interferon-Induced Transcriptional Programs in Human Peripheral Blood Cells, PLoS ONE, vol.5, issue.3, p.9753, 2010.
DOI : 10.1371/journal.pone.0009753.s010

D. Portillo and H. A. , The role of the spleen in malaria, Cellular Microbiology, vol.16, issue.1, pp.343-355, 2012.
DOI : 10.1093/clind/16.2.223

A. Chandele, P. Mukerjee, G. Das, R. Ahmed, and V. S. Chauhan, Phenotypic and functional profiling of malaria-induced CD8 and CD4 T cells during blood-stage infection with Plasmodium yoelii, Immunology, vol.107, issue.Suppl., pp.273-286, 2011.
DOI : 10.1073/pnas.1001323107

N. S. Butler, Therapeutic blockade of PD-L1 and LAG-3 rapidly clears established blood-stage Plasmodium infection, Nature Immunology, vol.11, issue.2, pp.188-1952180, 2012.
DOI : 10.1111/j.1365-2567.2011.03456.x

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3262959

I. Llingworth and J. , Chronic Exposure to Plasmodium falciparum Is Associated with Phenotypic Evidence of B and T Cell Exhaustion, The Journal of Immunology, vol.190, issue.3, pp.1038-104710, 1950.
DOI : 10.4049/jimmunol.1202438

M. N. Wykes, J. M. Horne-debets, C. Y. Leow, and D. S. Karunarathne, Malaria drives T cells to exhaustion. Frontiers in microbiology 5, p.249, 2014.
DOI : 10.3389/fmicb.2014.00249

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4034037

J. S. Richards and J. G. Beeson, The future for blood-stage vaccines against malaria, Immunology and Cell Biology, vol.66, issue.5, pp.377-39027, 2009.
DOI : 10.4049/jimmunol.180.3.1451

D. J. Pombo, Immunity to malaria after administration of ultra-low doses of red cells infected with Plasmodium falciparum, The Lancet, vol.360, issue.9333, pp.610-61710, 2002.
DOI : 10.1016/S0140-6736(02)09784-2

N. S. Butler, Superior Antimalarial Immunity after Vaccination with Late Liver Stage-Arresting Genetically Attenuated Parasites, Cell Host & Microbe, vol.9, issue.6, pp.451-462, 2011.
DOI : 10.1016/j.chom.2011.05.008

URL : http://doi.org/10.1016/j.chom.2011.05.008

M. R. Van-dijk, Genetically attenuated, P36p-deficient malarial sporozoites induce protective immunity and apoptosis of infected liver cells, Proceedings of the National Academy of Sciences, vol.120, issue.2, pp.12194-12199, 2005.
DOI : 10.1016/j.cell.2005.01.005

A. K. Mueller, M. Labaied, S. H. Kappe, and K. Matuschewski, Genetically modified Plasmodium parasites as a protective experimental malaria vaccine, Nature, vol.72, issue.7022, pp.164-16710, 1038.
DOI : 10.1016/0022-1759(88)90358-4

URL : http://www.nature.com/nature/journal/v446/n7131/pdf/nature05642.pdf

A. K. Mueller, Plasmodium liver stage developmental arrest by depletion of a protein at the parasite-host interface, Proceedings of the National Academy of Sciences, vol.433, issue.7022, pp.3022-30270408442102, 2005.
DOI : 10.1038/nature03188

N. S. Butler, A. M. Vaughan, J. T. Harty, and S. H. Kappe, Whole parasite vaccination approaches for prevention of malaria infection, Trends in Immunology, vol.33, issue.5, pp.247-254, 2012.
DOI : 10.1016/j.it.2012.02.001

L. M. Ting, M. Gissot, A. Coppi, P. Sinnis, and K. Kim, Attenuated Plasmodium yoelii lacking purine nucleoside phosphorylase confer protective immunity, Nature Medicine, vol.90, issue.9, pp.954-95810, 2008.
DOI : 10.1038/nm.1867

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3937818

A. S. Aly, M. J. Downie, C. B. Mamoun, and S. H. Kappe, Subpatent infection with nucleoside transporter 1-deficient Plasmodium blood stage parasites confers sterile protection against lethal malaria in mice, Cellular Microbiology, vol.69, issue.7, pp.930-938, 2010.
DOI : 10.1080/00034983.1975.11686998

R. Spaccapelo, Plasmepsin 4-deficient Plasmodium berghei are virulence attenuated and induce protective immunity against experimental malaria. The American journal of pathology 176, pp.205-217, 2010.
DOI : 10.2353/ajpath.2010.090504

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2797883

C. Demarta-gatsi, )???deficient parasites, The Journal of Experimental Medicine, vol.264, issue.8, pp.1419-1428, 2016.
DOI : 10.4049/jimmunol.175.4.2510

U. A. Bommer and B. J. Thiele, The translationally controlled tumour protein (TCTP) The international journal of biochemistry & cell biology 36, pp.379-385, 2004.

J. Hinojosa-moya, Phylogenetic and Structural Analysis of Translationally Controlled Tumor Proteins, Journal of Molecular Evolution, vol.22, issue.5, pp.472-48310, 2008.
DOI : 10.1093/oxfordjournals.molbev.a025664

A. Telerman and R. Amson, The molecular programme of tumour reversion: the steps beyond malignant transformation, Nature Reviews Cancer, vol.101, issue.3, pp.206-21610, 2009.
DOI : 10.4049/jimmunol.166.11.6545

S. M. Macdonald, Immune mimicry in malaria: Plasmodium falciparum secretes a functional histamine-releasing factor homolog in vitro and in vivo, Proceedings of the National Academy of Sciences, vol.276, issue.3, pp.10829-10832, 2001.
DOI : 10.1042/bj2760739

U. Bhattacharya, S. Roy, P. K. Kar, B. Sarangi, and S. C. Lahiri, Histamine & kinin system in experimental malaria, Indian J Med Res, vol.88, pp.558-563, 1988.

B. Maegraith and A. Fletcher, The Pathogenesis of Mammalian Malaria, Adv Parasitol, vol.10, pp.49-75, 1972.
DOI : 10.1016/S0065-308X(08)60172-4

T. Srichaikul, N. Archararit, T. Siriasawakul, and T. Viriyapanich, Histamine changes in Plasmodium falciparum malaria, Transactions of the Royal Society of Tropical Medicine and Hygiene, vol.70, issue.1, pp.36-38, 1976.
DOI : 10.1016/0035-9203(76)90004-3

W. Beghdadi, Inhibition of histamine-mediated signaling confers significant protection against severe malaria in mouse models of disease, The Journal of Experimental Medicine, vol.58, issue.2, pp.395-408, 2008.
DOI : 10.1089/vim.2004.17.565

C. Mathieu, histamine-releasing factor favours liver-stage development via inhibition of IL-6 production and associates with a severe outcome of disease, Cellular Microbiology, vol.277, issue.Suppl., pp.542-558, 2015.
DOI : 10.1074/jbc.M207413200

P. Perlmann and M. Troye-blomberg, Malaria and the Immune System in Humans, Chemical immunology, vol.80, pp.229-242, 2002.
DOI : 10.1159/000058846

H. C. Van-der-heyde, B. Pepper, J. Batchelder, F. Cigel, and W. P. Weidanz, The Time Course of Selected Malarial Infections in Cytokine-Deficient Mice, Experimental Parasitology, vol.85, issue.2, pp.206-2134132, 1996.
DOI : 10.1006/expr.1996.4132

A. W. Taylor-robinson, A model of development of acquired immunity to malaria in humans living under endemic conditions, Medical Hypotheses, vol.58, issue.2, pp.148-1561497, 2001.
DOI : 10.1054/mehy.2001.1497

S. Oehen and K. Brduscha-riem, Differentiation of naïve CTL to effector and memory CTL: correlation of effector function with phenotype and cell division, Journal of immunology, vol.161, pp.5338-5346, 1950.

D. S. Mcdermott and S. M. Varga, Quantifying Antigen-Specific CD4 T Cells during a Viral Infection: CD4 T Cell Responses Are Larger Than We Think, The Journal of Immunology, vol.187, issue.11, pp.5568-557610, 1950.
DOI : 10.4049/jimmunol.1102104

T. A. Springer, Traffic signals for lymphocyte recirculation and leukocyte emigration: The multistep paradigm, Cell, vol.76, issue.2, pp.301-314, 1994.
DOI : 10.1016/0092-8674(94)90337-9

A. D. Luster, R. Alon, and U. H. Von-andrian, Immune cell migration in inflammation: present and future therapeutic targets, Nature Immunology, vol.23, issue.12, pp.1182-119010, 2005.
DOI : 10.4049/jimmunol.169.2.651

E. E. Crouch, Regulation of AID expression in the immune response, The Journal of Experimental Medicine, vol.5, issue.5, pp.1145-115610, 2007.
DOI : 10.1073/pnas.0602353103

M. Anson, Regulation and Maintenance of an Adoptive T-Cell Dependent Memory B Cell Pool, PLOS ONE, vol.187, issue.7, 2016.
DOI : 10.1371/journal.pone.0167003.g005

K. Nganou-makamdop and R. W. Sauerwein, Liver or blood-stage arrest during malaria sporozoite immunization: the later the better?, Trends in Parasitology, vol.29, issue.6, pp.304-310008, 2013.
DOI : 10.1016/j.pt.2013.03.008

J. G. Kublin, Complete attenuation of genetically engineered Plasmodium falciparum sporozoites in human subjects, Science translational medicine, vol.9, pp.10-1126, 2017.

H. Sam and M. M. Stevenson, In vivo IL-12 production and IL-12 receptors beta1 and beta2 mRNA expression in the spleen are differentially up-regulated in resistant B6 and susceptible A/J mice during early blood-stage Plasmodium chabaudi AS malaria, Journal of immunology, pp.1950-162, 1999.

H. Sam and M. M. Stevenson, Early IL-12 p70, but not p40, production by splenic macrophages correlates with host resistance to blood-stage Plasmodium chabaudi AS malaria, Clinical and Experimental Immunology, vol.51, issue.2, pp.343-349, 1999.
DOI : 10.1006/cimm.1995.1125

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1905332

A. J. Luty, Low Interleukin-12 Activity in Severe Plasmodium falciparum Malaria, Infection and Immunity, vol.68, issue.7, pp.3909-3915, 2000.
DOI : 10.1128/IAI.68.7.3909-3915.2000

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC101666/pdf

D. J. Perkins, J. B. Weinberg, and P. G. Kremsner, Reduced Interleukin???12 and Transforming Growth Factor?????1 in Severe Childhood Malaria: Relationship of Cytokine Balance with Disease Severity, The Journal of Infectious Diseases, vol.182, issue.3, pp.988-992, 2000.
DOI : 10.1086/315762

C. L. Day, PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression, Nature, vol.170, issue.7109, pp.350-35410, 1038.
DOI : 10.4049/jimmunol.170.3.1257

K. A. Hofmeyer, H. Jeon, and X. Zang, The PD-1/PD-L1 (B7-H1) Pathway in Chronic Infection-Induced Cytotoxic T Lymphocyte Exhaustion, Journal of Biomedicine and Biotechnology, vol.182, issue.2, pp.10-1155451694, 2011.
DOI : 10.4049/jimmunol.1003304

E. J. Wherry, T cell exhaustion, Nature Immunology, vol.460, issue.6, pp.492-499, 2011.
DOI : 10.4049/jimmunol.0901297

J. M. Horne-debets, Mice lacking Programmed cell death-1 show a role for CD8+ T cells in long-term immunity against blood-stage malaria, Scientific Reports, vol.204, issue.1, pp.10-26210, 1038.
DOI : 10.1002/emmm.201202273

J. M. Horne-debets, PD-1 Dependent Exhaustion of CD8+ T Cells Drives Chronic Malaria, Cell Reports, vol.5, issue.5, pp.1204-1213, 2013.
DOI : 10.1016/j.celrep.2013.11.002

URL : http://doi.org/10.1016/j.celrep.2013.11.002

J. J. Charlton, Programmed Death-1 Shapes Memory Phenotype CD8 T Cell Subsets in a Cell-Intrinsic Manner, The Journal of Immunology, vol.190, issue.12, pp.6104-611410, 2013.
DOI : 10.4049/jimmunol.1201617

D. Bommarito, C. Hall, L. S. Taams, and V. M. Corrigall, Inflammatory cytokines compromise programmed cell death-1 (PD-1)- mediated T cell suppression in inflammatory arthritis through up-regulation of soluble PD-1. Clinical and experimental immunology, p.12949, 2017.

V. Ryg-cornejo, Severe Malaria Infections Impair Germinal Center Responses by Inhibiting T Follicular Helper Cell Differentiation, Cell Reports, vol.14, issue.1, pp.68-81006, 2016.
DOI : 10.1016/j.celrep.2015.12.006

URL : http://doi.org/10.1016/j.celrep.2015.12.006

M. Muramatsu, Class Switch Recombination and Hypermutation Require Activation-Induced Cytidine Deaminase (AID), a Potential RNA Editing Enzyme, Cell, vol.102, issue.5, pp.553-563, 2000.
DOI : 10.1016/S0092-8674(00)00078-7

D. A. Brake, W. P. Weidanz, and C. A. Long, Antigen-specific, interleukin 2-propagated T lymphocytes confer resistance to a murine malarial parasite, Plasmodium chabaudi adami, Journal of immunology, vol.137, pp.347-352, 1950.

J. Langhorne, S. Gillard, B. Simon, S. Slade, and K. Eichmann, characteristics during infection, International Immunology, vol.1, issue.4, pp.416-424, 1989.
DOI : 10.1093/intimm/1.4.416

A. I. Raja, Chemically Attenuated Blood-Stage Plasmodium yoelii Parasites Induce Long-Lived and Strain-Transcending Protection, Infection and Immunity, vol.84, issue.8, pp.2274-228810, 2016.
DOI : 10.1128/IAI.00157-16

URL : http://iai.asm.org/content/84/8/2274.full.pdf

M. F. Good, Cross-species malaria immunity induced by chemically attenuated parasites, Journal of Clinical Investigation, vol.123, issue.8, pp.10-1172, 2013.
DOI : 10.1172/JCI66634DS1

URL : http://www.jci.org/articles/view/66634/files/pdf