R. Abou-khalil, F. Le-grand, G. Pallafacchina, S. Valable, F. J. Authier et al., Autocrine and Paracrine Angiopoietin 1/Tie-2 Signaling Promotes Muscle Satellite Cell Self-Renewal, Cell Stem Cell, vol.5, issue.3, pp.298-309, 2009.
DOI : 10.1016/j.stem.2009.06.001

URL : http://doi.org/10.1016/j.stem.2009.06.001

C. A. Aguilar, R. Pop, A. Shcherbina, A. Watts, R. W. Matheny et al., A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA, Cell, vol.147, pp.358-369, 2011.

J. V. Chakkalakal, K. M. Jones, M. A. Basson, and A. S. Brack, The aged niche disrupts muscle stem cell quiescence, Nature, vol.118, issue.7420, pp.355-360, 2012.
DOI : 10.1016/j.cell.2004.06.025

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3605795

J. S. Chamberlain, J. Metzger, M. Reyes, D. Townsend, and J. A. Faulkner, Dystrophin-deficient mdx mice display a reduced life span and are susceptible to spontaneous rhabdomyosarcoma, The FASEB Journal, vol.21, issue.9, pp.2195-2204, 2007.
DOI : 10.1096/fj.06-7353com

C. C. Chang, S. T. Chuang, C. Y. Lee, and J. W. Wei, Role of cardiotoxin and phospholipase A in the blockade of nerve conduction and depolarization of skeletal muscle induced by cobra venom, British Journal of Pharmacology, vol.53, issue.4, pp.752-764, 1972.
DOI : 10.1007/BF00997079

B. Chazaud, C. Sonnet, P. Lafuste, G. Bassez, A. C. Rimaniol et al., Satellite cells attract monocytes and use macrophages as a support to escape apoptosis and enhance muscle growth, The Journal of Cell Biology, vol.47, issue.5, pp.1133-1143, 2003.
DOI : 10.1006/rwei.1999.0442

URL : http://jcb.rupress.org/content/jcb/163/5/1133.full.pdf

Y. Chen, G. Lin, and J. M. Slack, Control of muscle regeneration in the Xenopus tadpole tail byPax7, Development, vol.133, issue.12, pp.2303-2313, 2006.
DOI : 10.1242/dev.02397

T. H. Cheung, N. L. Quach, G. W. Charville, L. Liu, L. Park et al., Maintenance of muscle stem-cell quiescence by microRNA-489, Nature, vol.29, issue.7386, pp.524-528, 2012.
DOI : 10.1093/nar/29.9.e45

C. Christov, F. Chretien, R. Abou-khalil, G. Bassez, G. Vallet et al., Muscle Satellite Cells and Endothelial Cells: Close Neighbors and Privileged Partners, Molecular Biology of the Cell, vol.18, issue.4, pp.1397-1409, 2007.
DOI : 10.1091/mbc.E06-08-0693

URL : https://hal.archives-ouvertes.fr/inserm-00128985

C. A. Collins, I. Olsen, P. S. Zammit, L. Heslop, A. Petrie et al., Stem Cell Function, Self-Renewal, and Behavioral Heterogeneity of Cells from the Adult Muscle Satellite Cell Niche, Cell, vol.122, issue.2, pp.289-301, 2005.
DOI : 10.1016/j.cell.2005.05.010

C. A. Collins, P. S. Zammit, A. P. Ruiz, J. E. Morgan, and T. A. Partridge, A Population of Myogenic Stem Cells That Survives Skeletal Muscle Aging, Stem Cells, vol.8, issue.4, pp.885-894, 2007.
DOI : 10.1177/002215540305100701

G. Comai and S. Tajbakhsh, Molecular and Cellular Regulation of Skeletal Myogenesis, Curr Top Dev Biol, vol.110, pp.1-73, 2014.
DOI : 10.1016/B978-0-12-405943-6.00001-4

I. M. Conboy, M. J. Conboy, A. J. Wagers, E. R. Girma, I. L. Weissman et al., Rejuvenation of aged progenitor cells by exposure to a young systemic environment, Nature, vol.31, issue.7027, pp.760-764, 2005.
DOI : 10.1083/jcb.151.6.1221

B. D. Cosgrove, A. Sacco, P. M. Gilbert, and H. M. Blau, A home away from home: Challenges and opportunities in engineering in vitro muscle satellite cell niches, Differentiation, vol.78, issue.2-3, pp.185-194, 2009.
DOI : 10.1016/j.diff.2009.08.004

L. C. Davies, S. J. Jenkins, J. E. Allen, and P. R. Taylor, Tissue-resident macrophages, Nature Immunology, vol.181, issue.10, pp.986-995, 2013.
DOI : 10.1038/sj.emboj.7600085

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4045180

A. Dellavalle, G. Maroli, D. Covarello, E. Azzoni, A. Innocenzi et al., Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells, Nature Communications, vol.1, p.499, 2011.
DOI : 10.1186/1471-213X-1-4

URL : http://www.nature.com/articles/ncomms1508.pdf

A. Dellavalle, M. Sampaolesi, R. Tonlorenzi, E. Tagliafico, B. Sacchetti et al., Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells, Nature Cell Biology, vol.101, issue.3, pp.255-267, 2007.
DOI : 10.1073/pnas.091062498

T. Derrien, R. Johnson, G. Bussotti, A. Tanzer, S. Djebali et al., The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression, The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression, pp.1775-1789
DOI : 10.1101/gr.132159.111

URL : https://hal.archives-ouvertes.fr/hal-01205054

J. Diaz-manera, T. Touvier, A. Dellavalle, R. Tonlorenzi, F. S. Tedesco et al., Partial dysferlin reconstitution by adult murine mesoangioblasts is sufficient for full functional recovery in a murine model of dysferlinopathy, Cell Death and Disease, vol.31, issue.8, p.61, 2010.
DOI : 10.1212/WNL.57.11.2136

A. Fatica and I. Bozzoni, Long non-coding RNAs: new players in cell differentiation and development, Nature Reviews Genetics, vol.2011, issue.1, pp.7-21, 2014.
DOI : 10.1261/rna.029454.111

URL : https://hal.archives-ouvertes.fr/pasteur-01160208

G. Ferrari, G. Cusella-de-angelis, M. Coletta, E. Paolucci, A. Stornaiuolo et al., Muscle Regeneration by Bone Marrow-Derived Myogenic Progenitors, Science, vol.279, issue.5356, pp.1528-1530, 1998.
DOI : 10.1126/science.279.5356.1528

E. F. Finnegan and A. E. Pasquinelli, MicroRNA biogenesis: regulating the regulators. Critical reviews in biochemistry and molecular biology 48, pp.51-68, 2013.
DOI : 10.3109/10409238.2012.738643

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3557704

D. Fiore, R. N. Judson, M. Low, S. Lee, E. Zhang et al., Pharmacological blockage of fibro/adipogenic progenitor expansion and suppression of regenerative fibrogenesis is associated with impaired skeletal muscle regeneration, Stem Cell Research, vol.17, issue.1, pp.161-169, 2016.
DOI : 10.1016/j.scr.2016.06.007

S. Fukada, M. Yamaguchi, H. Kokubo, R. Ogawa, A. Uezumi et al., Hesr1 and Hesr3 are essential to generate undifferentiated quiescent satellite cells and to maintain satellite cell numbers, Development, vol.138, issue.21, pp.4609-4619, 2011.
DOI : 10.1242/dev.067165

URL : http://dev.biologists.org/content/develop/138/21/4609.full.pdf

C. Gargioli and J. M. Slack, Cell lineage tracing during Xenopus tail regeneration, Development, vol.131, issue.11, pp.2669-2679, 2004.
DOI : 10.1242/dev.01155

B. Gayraud-morel, F. Chretien, P. Flamant, D. Gomes, P. S. Zammit et al., A role for the myogenic determination gene Myf5 in adult regenerative myogenesis, Developmental Biology, vol.312, issue.1, pp.13-28, 2007.
DOI : 10.1016/j.ydbio.2007.08.059

B. Gayraud-morel, F. Chretien, and S. Tajbakhsh, Skeletal muscle as a paradigm for regenerative biology and medicine, Regenerative Medicine, vol.4, issue.2, pp.293-319, 2009.
DOI : 10.2217/17460751.4.2.293

P. M. Gilbert, K. L. Havenstrite, K. E. Magnusson, A. Sacco, N. A. Leonardi et al., Substrate Elasticity Regulates Skeletal Muscle Stem Cell Self-Renewal in Culture, Science, vol.26, issue.12, pp.1078-1081, 2010.
DOI : 10.1634/stemcells.2007-1017

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2929271

G. Perdiguero, E. Klapproth, K. Schulz, C. Busch, K. Azzoni et al., Tissue-resident macrophages originate from yolk sac-derived erythro-myeloid progenitors, Experimental Hematology, vol.43, issue.9, pp.547-551, 2015.
DOI : 10.1016/j.exphem.2015.06.130

C. Gong, Z. Li, K. Ramanujan, I. Clay, Y. Zhang et al., A Long Non-coding RNA, LncMyoD, Regulates Skeletal Muscle Differentiation by Blocking IMP2-Mediated mRNA Translation, Developmental Cell, vol.34, issue.2, pp.181-191, 2015.
DOI : 10.1016/j.devcel.2015.05.009

S. Gunther, J. Kim, S. Kostin, C. Lepper, C. M. Fan et al., Myf5-Positive Satellite Cells Contribute to Pax7-Dependent Long-Term Maintenance of Adult Muscle Stem Cells, Cell Stem Cell, vol.13, issue.5, pp.590-601, 2013.
DOI : 10.1016/j.stem.2013.07.016

G. C. Gurtner, S. Werner, Y. Barrandon, and M. T. Longaker, Wound repair and regeneration, Nature, vol.23, issue.7193, pp.314-321, 2008.
DOI : 10.1038/nm1504

J. M. Gutierrez and C. L. Ownby, Skeletal muscle degeneration induced by venom phospholipases A2: insights into the mechanisms of local and systemic myotoxicity, Toxicon, vol.42, issue.8, 2003.
DOI : 10.1016/j.toxicon.2003.11.005

D. Hardy, A. Besnard, M. Latil, G. Jouvion, D. Briand et al., Comparative Study of Injury Models for Studying Muscle Regeneration in Mice, PLOS ONE, vol.20, issue.Pt 1, 2016.
DOI : 10.1371/journal.pone.0147198.s010

URL : https://hal.archives-ouvertes.fr/pasteur-01447903

P. Hasty, A. Bradley, J. H. Morris, D. G. Edmondson, J. M. Venuti et al., Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene, Nature, vol.364, issue.6437, pp.501-506, 1993.
DOI : 10.1038/364501a0

S. Hayashi, I. Manabe, Y. Suzuki, F. Relaix, and Y. Oishi, Author response image 4., eLife, vol.281, 2016.
DOI : 10.7554/eLife.17462.024

W. J. Janssen, L. Barthel, A. Muldrow, R. E. Oberley-deegan, M. T. Kearns et al., Fas determines differential fates of resident and recruited macrophages during resolution of acute lung injury American journal of respiratory and critical care medicine, pp.547-560, 2011.

S. Jarriault, C. Brou, F. Logeat, E. H. Schroeter, R. Kopan et al., Signalling downstream of activated mammalian Notch, Nature, vol.377, issue.6547, pp.355-358, 1995.
DOI : 10.1038/377355a0

A. W. Joe, L. Yi, A. Natarajan, F. Le-grand, L. So et al., Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis, Nature Cell Biology, vol.439, issue.2, pp.153-163, 2010.
DOI : 10.1046/j.1469-7580.2003.00171.x

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4580288

G. Juban and B. Chazaud, Metabolic regulation of macrophages during tissue repair: insights from skeletal muscle regeneration, FEBS Letters, vol.43, 2017.
DOI : 10.1016/j.immuni.2015.08.023

H. J. Kaminski, M. Hakim, R. J. Leigh, M. B. Katirji, and R. L. Ruff, Extraocular muscles are spared in advanced duchenne dystrophy, Annals of Neurology, vol.14, issue.4, pp.586-588, 1992.
DOI : 10.1212/WNL.40.11.1663

L. Kassar-duchossoy, B. Gayraud-morel, D. Gomes, D. Rocancourt, M. Buckingham et al., Mrf4 determines skeletal muscle identity in Myf5:Myod double-mutant mice, Nature, vol.127, issue.7007, pp.466-471, 2004.
DOI : 10.1083/jcb.113.6.1255

T. J. Kirby, T. Chaillou, and J. J. Mccarthy, The role of microRNAs in skeletal muscle health and disease, Frontiers in bioscience, vol.20, pp.37-77, 2015.

T. Kitamoto and K. Hanaoka, Notch3 Null Mutation in Mice Causes Muscle Hyperplasia by Repetitive Muscle Regeneration, STEM CELLS, vol.15, issue.12, pp.2205-2216, 2010.
DOI : 10.1002/stem.547

J. R. Knapp, J. K. Davie, A. Myer, E. Meadows, E. N. Olson et al., Loss of myogenin in postnatal life leads to normal skeletal muscle but reduced body size, Development, vol.133, issue.4, pp.601-610, 2006.
DOI : 10.1242/dev.02249

S. Knappe, P. S. Zammit, and R. D. Knight, A population of Pax7-expressing muscle progenitor cells show differential responses to muscle injury dependent on developmental stage and injury extent, Frontiers in aging neuroscience 7, p.161, 2015.
DOI : 10.1242/jeb.102210

Y. M. Kobayashi, E. P. Rader, R. W. Crawford, N. K. Iyengar, D. R. Thedens et al., Sarcolemma-localized nNOS is required to maintain activity after mild exercise, Nature, vol.34, issue.7221, pp.511-515, 2008.
DOI : 10.1038/nature07414

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2588643

N. Konstantinides and M. Averof, A Common Cellular Basis for Muscle Regeneration in Arthropods and Vertebrates, Science, vol.132, issue.8, pp.788-791, 2014.
DOI : 10.1242/dev.01738

R. Kopan and M. X. Ilagan, The Canonical Notch Signaling Pathway: Unfolding the Activation Mechanism, Cell, vol.137, issue.2, pp.216-233, 2009.
DOI : 10.1016/j.cell.2009.03.045

URL : http://doi.org/10.1016/j.cell.2009.03.045

E. Kostallari, Y. Baba-amer, S. Alonso-martin, P. Ngoh, F. Relaix et al., Pericytes in the myovascular niche promote post-natal myofiber growth and satellite cell quiescence, Development, vol.142, issue.7, pp.1242-1253, 2015.
DOI : 10.1242/dev.115386

J. Krishnamurthy, M. R. Ramsey, K. L. Ligon, C. Torrice, A. Koh et al., p16INK4a induces an age-dependent decline in islet regenerative potential, Nature, vol.88, issue.7110, pp.16-20, 2006.
DOI : 10.1128/MCB.19.10.7011

S. Kuang, K. Kuroda, F. Le-grand, and M. A. Rudnicki, Asymmetric Self-Renewal and Commitment of Satellite Stem Cells in Muscle, Cell, vol.129, issue.5, pp.999-1010, 2007.
DOI : 10.1016/j.cell.2007.03.044

M. Latil, P. Rocheteau, L. Chatre, S. Sanulli, S. Memet et al., Skeletal muscle stem cells adopt a dormant cell state post mortem and retain regenerative capacity, Nature Communications, vol.76, p.903, 2012.
DOI : 10.1016/S0925-4773(98)00093-8

URL : https://hal.archives-ouvertes.fr/pasteur-00711881

T. Laumonier and J. Menetrey, Muscle injuries and strategies for improving their repair, Journal of Experimental Orthopaedics, vol.25, issue.9, p.15, 2016.
DOI : 10.1038/nbt1334

URL : http://doi.org/10.1186/s40634-016-0051-7

L. Leclere and E. Rottinger, Diversity of Cnidarian Muscles: Function, Anatomy, Development and Regeneration, Frontiers in cell and developmental biology 4, 2016.
DOI : 10.1016/S0748-3007(03)00007-0

URL : https://hal.archives-ouvertes.fr/hal-01468096

D. R. Lemos, F. Babaeijandaghi, M. Low, C. K. Chang, S. T. Lee et al., Nilotinib reduces muscle fibrosis in chronic muscle injury by promoting TNF-mediated apoptosis of fibro/adipogenic progenitors, Nature Medicine, vol.22, issue.7, pp.786-794, 2015.
DOI : 10.1016/j.cell.2013.02.053

C. Lepper, S. J. Conway, and C. M. Fan, Adult satellite cells and embryonic muscle progenitors have distinct genetic requirements, Nature, vol.22, issue.7255, pp.627-631, 2009.
DOI : 10.1038/nature08209

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2767162

C. Lepper, T. A. Partridge, and C. M. Fan, An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration, Development, vol.138, issue.17, pp.3639-3646, 2011.
DOI : 10.1242/dev.067595

Y. C. Lin, N. G. Grigoriev, and A. N. Spencer, Wound Healing in Jellyfish Striated Muscle Involves Rapid Switching between Two Modes of Cell Motility and a Change in the Source of Regulatory Calcium, Developmental Biology, vol.225, issue.1, pp.87-100, 2000.
DOI : 10.1006/dbio.2000.9807

N. Liu, G. A. Garry, S. Li, S. Bezprozvannaya, E. Sanchez-ortiz et al., A Twist2-dependent progenitor cell contributes to adult skeletal muscle, Nature Cell Biology, vol.81, issue.3, pp.202-213, 2017.
DOI : 10.1093/bioinformatics/btp616

W. Liu, Y. Wen, P. Bi, X. Lai, X. S. Liu et al., Hypoxia promotes satellite cell self-renewal and enhances the efficiency of myoblast transplantation, Development, vol.139, issue.16, pp.2857-2865
DOI : 10.1242/dev.079665

H. Lu, D. Huang, R. M. Ransohoff, and L. Zhou, Acute skeletal muscle injury: CCL2 expression by both monocytes and injured muscle is required for repair, The FASEB Journal, vol.25, issue.10, pp.3344-3355, 2011.
DOI : 10.1096/fj.10-178939

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3177578

E. Luque, J. Pena, P. Martin, I. Jimena, and R. Vaamonde, Capillary Supply During Development of Individual Regenerating Muscle Fibers, Anatomia, Histologia, Embryologia: Journal of Veterinary Medicine Series C, vol.241, issue.2, pp.87-89, 1995.
DOI : 10.1007/BF00258986

V. Malik, L. R. Rodino-klapac, and J. R. Mendell, Emerging drugs for Duchenne muscular dystrophy, Expert Opinion on Emerging Drugs, vol.267, issue.2, pp.261-277, 2012.
DOI : 10.1038/nature05282

E. A. Martin, R. Barresi, B. J. Byrne, E. I. Tsimerinov, B. L. Scott et al., Tadalafil Alleviates Muscle Ischemia in Patients with Becker Muscular Dystrophy, Science Translational Medicine, vol.154, issue.4, pp.162-155, 2012.
DOI : 10.1016/S0002-9440(10)65354-0

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3935430

C. Martinet, P. Monnier, Y. Louault, M. Benard, A. Gabory et al., H19 controls reactivation of the imprinted gene network during muscle regeneration, Development, vol.143, issue.6, pp.962-971, 2016.
DOI : 10.1242/dev.131771

A. Matsumoto, A. Pasut, M. Matsumoto, R. Yamashita, J. Fung et al., mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide, Nature, vol.5, issue.7636, pp.228-232, 2017.
DOI : 10.1158/2159-8290.CD-14-1347

A. Mauro, SATELLITE CELL OF SKELETAL MUSCLE FIBERS, The Journal of Cell Biology, vol.9, issue.2, pp.493-495, 1961.
DOI : 10.1083/jcb.9.2.493

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2225012/pdf

E. Meadows, J. H. Cho, J. M. Flynn, and W. H. Klein, Myogenin regulates a distinct genetic program in adult muscle stem cells, Developmental Biology, vol.322, issue.2, pp.406-414, 2008.
DOI : 10.1016/j.ydbio.2008.07.024

URL : http://doi.org/10.1016/j.ydbio.2008.07.024

L. A. Megeney, B. Kablar, K. Garrett, J. E. Anderson, and M. A. Rudnicki, MyoD is required for myogenic stem cell function in adult skeletal muscle., Genes & Development, vol.10, issue.10, pp.1173-1183, 1996.
DOI : 10.1101/gad.10.10.1173

K. J. Mitchell, A. Pannerec, B. Cadot, A. Parlakian, V. Besson et al., Identification and characterization of a non-satellite cell muscle resident progenitor during postnatal development, Nature Cell Biology, vol.22, pp.257-266, 2010.
DOI : 10.2527/jas1979.4851109x

F. P. Moss and C. P. Leblond, NATURE OF DIVIDING NUCLEI IN SKELETAL MUSCLE OF GROWING RATS, The Journal of Cell Biology, vol.44, issue.2, pp.459-462, 1970.
DOI : 10.1083/jcb.44.2.459

N. Motohashi and A. Asakura, Muscle satellite cell heterogeneity and self-renewal. Frontiers in cell, 2014.
DOI : 10.3389/fcell.2014.00001

URL : http://doi.org/10.3389/fcell.2014.00001

P. Mourikis, R. Sambasivan, D. Castel, P. Rocheteau, V. Bizzarro et al., A Critical Requirement for Notch Signaling in Maintenance of the Quiescent Skeletal Muscle Stem Cell State, STEM CELLS, vol.8, issue.2, pp.243-252, 2012.
DOI : 10.1016/j.devcel.2005.01.019

M. M. Murphy, J. A. Lawson, S. J. Mathew, D. A. Hutcheson, and G. Kardon, Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration, Development, vol.138, issue.17, pp.3625-3637, 2011.
DOI : 10.1242/dev.064162

URL : http://dev.biologists.org/content/develop/138/17/3625.full.pdf

M. V. Neguembor, M. Jothi, and D. Gabellini, Long noncoding RNAs, emerging players in muscle differentiation and disease, Skeletal Muscle, vol.4, issue.1, 2014.
DOI : 10.1242/dev.095786

URL : http://doi.org/10.1186/2044-5040-4-8

S. Oustanina, G. Hause, and T. Braun, Pax7 directs postnatal renewal and propagation of myogenic satellite cells but not their specification, The EMBO Journal, vol.89, issue.16, pp.3430-3439, 2004.
DOI : 10.1126/science.1074807

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC514519

K. V. Pajcini, S. Y. Corbel, J. Sage, J. H. Pomerantz, and H. M. Blau, Transient Inactivation of Rb and ARF Yields Regenerative Cells from Postmitotic Mammalian Muscle, Cell Stem Cell, vol.7, issue.2, pp.198-213, 2010.
DOI : 10.1016/j.stem.2010.05.022

URL : http://doi.org/10.1016/j.stem.2010.05.022

N. D. Paris, A. Soroka, A. Klose, W. Liu, and J. V. Chakkalakal, Author response, eLife, vol.166, 2016.
DOI : 10.7554/eLife.19484.017

A. E. Pasquinelli, MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship, Nature Reviews Genetics, vol.20, pp.271-282, 2012.
DOI : 10.1016/j.cub.2010.08.052

A. Pasut, N. C. Chang, U. Gurriaran-rodriguez, S. Faulkes, H. Yin et al., Notch Signaling Rescues Loss of Satellite Cells Lacking Pax7 and Promotes Brown Adipogenic Differentiation, Cell Reports, vol.16, issue.2, pp.333-343, 2016.
DOI : 10.1016/j.celrep.2016.06.001

URL : http://doi.org/10.1016/j.celrep.2016.06.001

T. G. Pipalia, J. Koth, S. D. Roy, C. L. Hammond, K. Kawakami et al., Cellular dynamics of regeneration reveals role of two distinct Pax7 stem cell populations in larval zebrafish muscle repair, Disease models & mechanisms 9, pp.671-684, 2016.
DOI : 10.1242/dmm.022251

A. Pisconti, G. B. Banks, F. Babaeijandaghi, N. D. Betta, F. M. Rossi et al., Loss of niche-satellite cell interactions in syndecan-3 null mice alters muscle progenitor cell homeostasis improving muscle regeneration, Skeletal Muscle, vol.5, issue.1, p.34, 2016.
DOI : 10.1093/hmg/5.8.1149

A. Pisconti, D. D. Cornelison, H. C. Olguin, T. L. Antwine, and B. B. Olwin, Syndecan-3 and Notch cooperate in regulating adult myogenesis, The Journal of Cell Biology, vol.120, issue.3, pp.427-441, 2010.
DOI : 10.1128/MCB.24.14.6268-6277.2004

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2922652

E. Porpiglia, N. Samusik, A. T. Van-ho, B. D. Cosgrove, T. Mai et al., High-resolution myogenic lineage mapping by single-cell mass cytometry, Nature Cell Biology, vol.94, issue.5, pp.558-567, 2017.
DOI : 10.1002/cyto.a.22271

F. Relaix, D. Montarras, S. Zaffran, B. Gayraud-morel, D. Rocancourt et al., Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells, The Journal of Cell Biology, vol.48, issue.1, pp.91-102, 2006.
DOI : 10.1083/jcb.200312007

URL : https://hal.archives-ouvertes.fr/hal-00311188

F. Relaix, D. Rocancourt, A. Mansouri, and M. Buckingham, A Pax3/Pax7-dependent population of skeletal muscle progenitor cells, Nature, vol.72, issue.7044, pp.948-953, 2005.
DOI : 10.1242/dev.01617

URL : https://hal.archives-ouvertes.fr/pasteur-00176824

F. Relaix and P. S. Zammit, Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns centre stage, Development, vol.139, issue.16, pp.2845-2856, 2012.
DOI : 10.1242/dev.069088

M. Reznik, THYMIDINE-3H UPTAKE BY SATELLITE CELLS OF REGENERATING SKELETAL MUSCLE, The Journal of Cell Biology, vol.40, issue.2, pp.568-571, 1969.
DOI : 10.1083/jcb.40.2.568

R. P. Rhoads, R. M. Johnson, C. R. Rathbone, X. Liu, C. Temm-grove et al., Satellite cell-mediated angiogenesis in vitro coincides with a functional hypoxia-inducible factor pathway, AJP: Cell Physiology, vol.296, issue.6, pp.1321-1328, 2009.
DOI : 10.1152/ajpcell.00391.2008

P. Rocheteau, B. Gayraud-morel, I. Siegl-cachedenier, M. A. Blasco, and S. Tajbakhsh, A Subpopulation of Adult Skeletal Muscle Stem Cells Retains All Template DNA Strands after Cell Division, Cell, vol.148, issue.1-2, pp.112-125, 2012.
DOI : 10.1016/j.cell.2011.11.049

C. A. Rossi, M. Flaibani, B. Blaauw, M. Pozzobon, E. Figallo et al., In vivo tissue engineering of functional skeletal muscle by freshly isolated satellite cells embedded in a photopolymerizable hydrogel, The FASEB Journal, vol.25, issue.7, pp.2296-2304, 2011.
DOI : 10.1096/fj.10-174755

G. Rossi, S. Antonini, C. Bonfanti, S. Monteverde, C. Vezzali et al., Nfix Regulates Temporal Progression of Muscle Regeneration through Modulation of Myostatin Expression, Cell Reports, vol.14, issue.9, pp.2238-2249, 2016.
DOI : 10.1016/j.celrep.2016.02.014

M. Rozo, L. Li, and C. M. Fan, Targeting ??1-integrin signaling enhances regeneration in aged and dystrophic muscle in mice, Nature Medicine, vol.21, issue.8, pp.889-896, 2016.
DOI : 10.1038/nbt.2450

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4974124

M. A. Rudnicki, P. N. Schnegelsberg, R. H. Stead, T. Braun, H. H. Arnold et al., MyoD or Myf-5 is required for the formation of skeletal muscle, Cell, vol.75, issue.7, pp.1351-1359, 1993.
DOI : 10.1016/0092-8674(93)90621-V

M. Rumman, J. Dhawan, and M. Kassem, Concise Review: Quiescence in Adult Stem Cells: Biological Significance and Relevance to Tissue Regeneration, STEM CELLS, vol.7, issue.10, pp.2903-2912, 2015.
DOI : 10.1016/j.stem.2010.06.020

M. Saclier, H. Yacoub-youssef, A. L. Mackey, L. Arnold, H. Ardjoune et al., Differentially Activated Macrophages Orchestrate Myogenic Precursor Cell Fate During Human Skeletal Muscle Regeneration, STEM CELLS, vol.195, issue.2, pp.384-396, 2013.
DOI : 10.1083/jcb.201104053

URL : https://hal.archives-ouvertes.fr/inserm-00787108

M. Sadeh, Effects of aging on skeletal muscle regeneration, Journal of the Neurological Sciences, vol.87, issue.1, pp.67-74, 1988.
DOI : 10.1016/0022-510X(88)90055-X

K. Sadtler, K. Estrellas, B. W. Allen, M. T. Wolf, H. Fan et al., Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells, Science, vol.43, issue.D1, pp.366-370, 2016.
DOI : 10.1093/nar/gku1003

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4866509

A. Saera-vila, D. S. Kasprick, T. L. Junttila, S. J. Grzegorski, K. W. Louie et al., Myocyte Dedifferentiation Drives Extraocular Muscle Regeneration in Adult Zebrafish, Investigative Opthalmology & Visual Science, vol.56, issue.8, pp.4977-4993, 2015.
DOI : 10.1167/iovs.14-16103

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4525682

R. Sambasivan, B. Gayraud-morel, G. Dumas, C. Cimper, S. Paisant et al., Distinct Regulatory Cascades Govern Extraocular and Pharyngeal Arch Muscle Progenitor Cell Fates, Developmental Cell, vol.16, issue.6, pp.810-821, 2009.
DOI : 10.1016/j.devcel.2009.05.008

URL : https://hal.archives-ouvertes.fr/hal-00428975

R. Sambasivan and S. Tajbakhsh, Skeletal muscle stem cell birth and properties. Seminars in cell & developmental biology 18, pp.870-882, 2007.
DOI : 10.1016/j.semcdb.2007.09.013

R. Sambasivan, R. Yao, A. Kissenpfennig, L. Van-wittenberghe, A. Paldi et al., Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration, Development, vol.138, issue.17, pp.3647-3656, 2011.
DOI : 10.1242/dev.067587

URL : https://hal.archives-ouvertes.fr/hal-00667781

M. Sampaolesi, S. Blot, G. D-'antona, N. Granger, R. Tonlorenzi et al., Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs, Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs, pp.574-579, 2006.
DOI : 10.1038/nm0302-253

T. Sandoval-guzman, H. Wang, S. Khattak, M. Schuez, K. Roensch et al., Fundamental Differences in Dedifferentiation and Stem Cell Recruitment during Skeletal Muscle Regeneration in Two Salamander Species, Cell Stem Cell, vol.14, issue.2, pp.174-187, 2014.
DOI : 10.1016/j.stem.2013.11.007

S. Schiaffino, K. A. Dyar, S. Ciciliot, B. Blaauw, and M. Sandri, Mechanisms regulating skeletal muscle growth and atrophy, FEBS Journal, vol.163, issue.17, pp.4294-4314, 2013.
DOI : 10.1016/0014-4827(86)90574-4

E. Schultz, M. C. Gibson, and T. Champion, Satellite cells are mitotically quiescent in mature mouse muscle: An EM and radioautographic study, Journal of Experimental Zoology, vol.185, issue.3, pp.451-456, 1978.
DOI : 10.1002/jez.1402060314

P. Seale, L. A. Sabourin, A. Girgis-gabardo, A. Mansouri, P. Gruss et al., Pax7 Is Required for the Specification of Myogenic Satellite Cells, Cell, vol.102, issue.6, pp.777-786, 2000.
DOI : 10.1016/S0092-8674(00)00066-0

A. W. Seifert, J. R. Monaghan, M. D. Smith, B. Pasch, A. C. Stier et al., The influence of fundamental traits on mechanisms controlling appendage regeneration, Biological Reviews, vol.10, issue.Pt 3, pp.330-345, 2012.
DOI : 10.1101/gad.10.23.3051

T. Shavlakadze, J. Mcgeachie, and M. D. Grounds, Delayed but excellent myogenic stem cell response of regenerating geriatric skeletal muscles in mice, Biogerontology, vol.46, issue.12, pp.363-376, 2010.
DOI : 10.1177/002215540004801110

P. Sicinski, Y. Geng, A. S. Ryder-cook, E. A. Barnard, M. G. Darlison et al., The molecular basis of muscular dystrophy in the mdx mouse: a point mutation, Science, vol.244, issue.4912, pp.1578-1580, 1989.
DOI : 10.1126/science.2662404

M. C. Simon and B. Keith, The role of oxygen availability in embryonic development and stem cell function, Nature Reviews Molecular Cell Biology, vol.274, issue.4, pp.285-296, 2008.
DOI : 10.1172/JCI17669

M. H. Snow, Myogenic cell formation in regenerating rat skeletal muscle injured by mincing. II. An autoradiographic study. The Anatomical record 188, pp.201-217, 1977.
DOI : 10.1002/ar.1091880205

I. M. Somorjai, R. L. Somorjai, J. Garcia-fernandez, and H. Escriva, Vertebrate-like regeneration in the invertebrate chordate amphioxus, Proceedings of the National Academy of Sciences, vol.18, issue.4, pp.517-522, 2012.
DOI : 10.1016/j.devcel.2010.02.008

M. H. Spitzer and G. P. Nolan, Mass Cytometry: Single Cells, Many Features, Cell, vol.165, issue.4, pp.780-791, 2016.
DOI : 10.1016/j.cell.2016.04.019

S. Steinfartz, M. Weitere, and D. Tautz, Tracing the first step to speciation: ecological and genetic differentiation of a salamander population in a small forest, Molecular Ecology, vol.13, issue.21, pp.4550-4561, 2007.
DOI : 10.1111/j.1365-294X.2004.02155.x

W. L. Straube and E. M. Tanaka, Reversibility of the Differentiated State: Regeneration in Amphibians, Artificial Organs, vol.225, issue.10, pp.743-755, 2006.
DOI : 10.1016/B978-1-4831-9954-2.50010-0

P. Stuelsatz, A. Shearer, Y. Li, L. A. Muir, N. Ieronimakis et al., Extraocular muscle satellite cells are high performance myo-engines retaining efficient regenerative capacity in dystrophin deficiency, Developmental Biology, vol.397, issue.1, pp.31-44, 2015.
DOI : 10.1016/j.ydbio.2014.08.035

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4309674

S. Tajbakhsh, Skeletal muscle stem cells in developmental versus regenerative myogenesis, Journal of Internal Medicine, vol.116, issue.4, pp.372-389, 2009.
DOI : 10.1002/aja.1001990407

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2796.2009.02158.x/pdf

S. Tajbakhsh, lncRNA-Encoded Polypeptide SPAR(s) with mTORC1 to Regulate Skeletal Muscle Regeneration, Cell Stem Cell, vol.20, issue.4, pp.428-430, 2017.
DOI : 10.1016/j.stem.2017.03.016

S. Tajbakhsh, D. Rocancourt, and M. Buckingham, Muscle progenitor cells failing to respond to positional cues adopt non-myogenic fates in myf-5 null mice, Nature, vol.384, issue.6606, pp.266-270, 1996.
DOI : 10.1038/384266a0

H. V. Tanaka, N. C. Ng, Y. Yu, Z. Casco-robles, M. M. Maruo et al., A developmentally regulated switch from stem cells to dedifferentiation for limb muscle regeneration in newts, Nature Communications, vol.4, 2016.
DOI : 10.1038/srep06043

G. D. Thomas, M. Sander, K. S. Lau, P. L. Huang, J. T. Stull et al., Impaired metabolic modulation of ??-adrenergic vasoconstriction in dystrophin-deficient skeletal muscle, Proceedings of the National Academy of Sciences, vol.52, issue.4, pp.15090-15095, 1998.
DOI : 10.1016/0092-8674(88)90463-1

J. G. Tidball and S. A. Villalta, Regulatory interactions between muscle and the immune system during muscle regeneration, AJP: Regulatory, Integrative and Comparative Physiology, vol.298, issue.5, pp.1173-1187, 2010.
DOI : 10.1152/ajpregu.00735.2009

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2867520

A. Uezumi, S. Fukada, N. Yamamoto, S. Takeda, and K. Tsuchida, P72. Mesenchymal progenitors distinct from muscle satellite cells contribute to ectopic fat cell formation in skeletal muscle, Differentiation, vol.80, pp.143-152, 2010.
DOI : 10.1016/j.diff.2010.09.078

K. B. Umansky, Y. Gruenbaum-cohen, M. Tsoory, E. Feldmesser, D. Goldenberg et al., Runx1 Transcription Factor Is Required for Myoblasts Proliferation during Muscle Regeneration, PLOS Genetics, vol.9, issue.2, 2015.
DOI : 10.1371/journal.pgen.1005457.s018

URL : http://doi.org/10.1371/journal.pgen.1005457

J. M. Venuti, J. H. Morris, J. L. Vivian, E. N. Olson, and W. H. Klein, Myogenin is required for late but not early aspects of myogenesis during mouse development, The Journal of Cell Biology, vol.128, issue.4, pp.563-576, 1995.
DOI : 10.1083/jcb.128.4.563

S. A. Villalta, H. X. Nguyen, B. Deng, T. Gotoh, and J. G. Tidball, Shifts in macrophage phenotypes and macrophage competition for arginine metabolism affect the severity of muscle pathology in muscular dystrophy, Human Molecular Genetics, vol.18, issue.3, pp.482-496, 2009.
DOI : 10.1093/hmg/ddn376

J. Von-maltzahn, A. E. Jones, R. J. Parks, and M. A. Rudnicki, Pax7 is critical for the normal function of satellite cells in adult skeletal muscle, Proceedings of the National Academy of Sciences, vol.14, issue.2, pp.16474-16479, 2013.
DOI : 10.1038/ncb2404

A. Wagatsuma, Endogenous expression of angiogenesis-related factors in response to muscle injury, Molecular and Cellular Biochemistry, vol.153, issue.1, pp.151-159, 2007.
DOI : 10.1016/S0002-9440(10)65601-5

H. Wang, S. Loof, P. Borg, G. A. Nader, H. M. Blau et al., Turning terminally differentiated skeletal muscle cells into regenerative progenitors, Nature Communications, vol.6, p.7916, 2015.
DOI : 10.4161/cc.6.9.4141

URL : http://doi.org/10.1038/ncomms8916

C. M. Weber, M. Q. Martindale, S. J. Tapscott, and G. A. Unguez, Activation of Pax7-Positive Cells in a Non-Contractile Tissue Contributes to Regeneration of Myogenic Tissues in the Electric Fish S. macrurus, PLoS ONE, vol.129, issue.130, p.36819, 2012.
DOI : 10.1371/journal.pone.0036819.g010

M. T. Webster, U. Manor, J. Lippincott-schwartz, and C. M. Fan, Intravital Imaging Reveals Ghost Fibers as Architectural Units Guiding Myogenic Progenitors during Regeneration, Cell stem cell, pp.243-252, 2016.
DOI : 10.1016/j.stem.2015.11.005

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4744135

J. D. White, A. Scaffidi, M. Davies, J. Mcgeachie, M. A. Rudnicki et al., Myotube formation is delayed but not prevented in MyoD-deficient skeletal muscle: studies in regenerating whole muscle grafts of adult mice. The journal of histochemistry and cytochemistry : official journal of the, Histochemistry Society, vol.48, pp.1531-1544, 2000.

R. B. White, A. S. Bierinx, V. F. Gnocchi, and P. S. Zammit, Dynamics of muscle fibre growth during postnatal mouse development, BMC Developmental Biology, vol.10, issue.1, 2010.
DOI : 10.1186/1471-213X-10-21

A. H. Williams, N. Liu, E. Van-rooij, and E. N. Olson, MicroRNA control of muscle development and disease, Current Opinion in Cell Biology, vol.21, issue.3, pp.461-469, 2009.
DOI : 10.1016/j.ceb.2009.01.029

X. Yang, S. Yang, C. Wang, and S. Kuang, The hypoxia-inducible factors HIF1?? and HIF2?? are dispensable for embryonic muscle development but essential for postnatal muscle regeneration, Journal of Biological Chemistry, vol.17, issue.14, pp.5981-5991, 2017.
DOI : 10.1074/jbc.M115.688671

S. Yona, K. W. Kim, Y. Wolf, A. Mildner, D. Varol et al., Fate Mapping Reveals Origins and Dynamics of Monocytes and Tissue Macrophages under Homeostasis, Immunity, vol.38, issue.1, pp.79-91, 2013.
DOI : 10.1016/j.immuni.2012.12.001

URL : http://doi.org/10.1016/j.immuni.2013.05.008