]. C. Hamers-casterman, T. Atarhouch, S. Muyldermans, G. Robinson, C. Hamers et al., Naturally occurring antibodies devoid of light chains, Nature, vol.363, issue.6428, pp.446-454, 1993.
DOI : 10.1038/363446a0

T. Li, J. Bourgeois, S. Celli, F. Glacial, A. Sourd et al., Cell-penetrating anti-GFAP VHH and corresponding fluorescent fusion protein VHH-GFP spontaneously cross the blood-brain barrier and specifically recognize astrocytes: application to brain imaging, The FASEB Journal, vol.26, issue.10, pp.3969-7911, 2012.
DOI : 10.1096/fj.11-201384

URL : https://hal.archives-ouvertes.fr/pasteur-01373103

A. Olichon, T. Surrey, M. A. Ghahroudi, A. Desmyter, L. Wyns et al., Selection of genetically encoded fluorescent single domain antibodies engineered for efficient expression in Escherichia coli Selection and identification of single domain antibody fragments from camel heavy-chain antibodies, J. Biol. Chem. FEBS Lett, vol.28297, issue.414, pp.36314-36334, 1997.

C. Jobling, M. Jarman, N. Teh, C. Holmberg, M. E. Blake et al., Immunomodulation of enzyme function in plants by single-domain antibody fragments, Selection by phage display of llama conventional V(H) fragments with heavy chain antibody V(H)H properties., J, pp.77-80, 2003.
DOI : 10.1007/BF00028908

C. Perruchini, F. Pecorari, J. Bourgeois, C. Duyckaerts, F. Rougeon et al., Llama VHH antibody fragments against GFAP: better diffusion in fixed tissues than classical monoclonal antibodies, Acta Neuropathologica, vol.4, issue.5, pp.685-95, 2009.
DOI : 10.1016/S0167-4838(99)00030-8

URL : https://hal.archives-ouvertes.fr/pasteur-00429632

C. Maskos, F. Czech, C. Grueninger, M. Duyckaerts, S. Dhenain et al., Camelid single-domain antibodies: A versatile tool for in vivo imaging of extracellular and intracellular brain targets, J. Control. Release, pp.243-244, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01375692

I. Achour, P. Cavelier, M. Tichit, C. Bouchier, P. Lafaye et al., Tetrameric and Homodimeric Camelid IgGs Originate from the Same IgH Locus, The Journal of Immunology, vol.181, issue.3, 2001.
DOI : 10.4049/jimmunol.181.3.2001

URL : https://hal.archives-ouvertes.fr/pasteur-00429626

P. Dufner, L. Jermutus, and R. R. Minter, Harnessing phage and ribosome display for antibody optimisation, Trends in Biotechnology, vol.24, issue.11, 2006.
DOI : 10.1016/j.tibtech.2006.09.004

G. P. Smith, Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface, Science, vol.228, issue.4705, pp.1315-1322, 1985.
DOI : 10.1126/science.4001944

J. Mccafferty, A. D. Griffiths, G. Winter, and D. J. , Phage antibodies: filamentous phage displaying antibody variable domains, Nature, vol.348, issue.6301, pp.348-552, 1990.
DOI : 10.1038/348552a0

M. Pellis, E. Pardon, K. Zolghadr, U. Rothbauer, C. Vincke et al., A bacterial-two-hybrid selection system for one-step isolation of intracellularly functional Nanobodies, Archives of Biochemistry and Biophysics, vol.526, issue.2
DOI : 10.1016/j.abb.2012.04.023

B. Liu, F. Conrad, M. R. Cooperberg, D. B. Kirpotin, and J. D. Marks, Mapping Tumor Epitope Space by Direct Selection of Single-Chain Fv Antibody Libraries on Prostate Cancer Cells, Cancer Research, vol.64, issue.2, pp.704-714, 2004.
DOI : 10.1158/0008-5472.CAN-03-2732

J. Tordsson, L. Abrahmsén, T. Kalland, C. Ljung, C. Ingvar et al., Efficient selection of scFv antibody phage by adsorption to in situ expressed antigens in tissue sections, Journal of Immunological Methods, vol.210, issue.1
DOI : 10.1016/S0022-1759(97)00165-8

R. Pasqualini and E. Ruoslahti, Organ targeting In vivo using phage display peptide libraries, Nature, vol.380, issue.6572, pp.364-370, 1996.
DOI : 10.1038/380364a0

J. Hanes and A. Plückthun, In vitro selection and evolution of functional proteins by using ribosome display, Proceedings of the National Academy of Sciences, vol.22, issue.25, pp.4937-4979, 1997.
DOI : 10.1093/nar/22.25.5600

J. Hanes, L. Jermutus, S. Weber-bornhauser, H. R. Bosshard, and A. Plückthun, Ribosome display efficiently selects and evolves high-affinity antibodies in vitro from immune libraries, Proceedings of the National Academy of Sciences, vol.93, issue.12, pp.14130-14135, 1998.
DOI : 10.1073/pnas.93.12.5688

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC24338/pdf

J. Hanes, C. Schaffitzel, A. Knappik, and A. Plückthun, Picomolar affinity antibodies from a fully synthetic naive library selected and evolved by ribosome display, Nat. Biotechnol, vol.18, pp.1287-92, 2000.

M. Mercken, M. Vandermeeren, U. Lübke, J. Six, J. Boons et al., Monoclonal antibodies with selective specificity for Alzheimer Tau are directed against phosphatase-sensitive epitopes, Acta Neuropathologica, vol.84, issue.3, pp.265-72, 1992.
DOI : 10.1007/BF00227819

P. Lafaye, I. Achour, P. England, C. Duyckaerts, and F. Rougeon, Single-domain antibodies recognize selectively small oligomeric forms of amyloid beta, prevent Abeta-induced neurotoxicity and inhibit fibril formation, Mol. Immunol, pp.46-695, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-00429629

P. Lafaye, F. Nato, J. C. Mazié, and N. Doyen, Similar binding properties for a neutralizing antitetanus toxoid human monoclonal antibody and its bacterially expressed Fab
DOI : 10.1016/0923-2494(96)81041-8

B. Friguet, A. F. Chaffotte, L. Djavadi-ohaniance, and M. E. Goldberg, Measurements of the true affinity constant in solution of antigen-antibody complexes by enzyme-linked immunosorbent assay, Journal of Immunological Methods, vol.77, issue.2, pp.305-324, 1985.
DOI : 10.1016/0022-1759(85)90044-4

M. A. Korolainen, S. Auriola, T. A. Nyman, I. Alafuzoff, and T. Pirttilä, Proteomic analysis of glial fibrillary acidic protein in Alzheimer's disease and aging brain, Neurobiology of Disease, vol.20, issue.3, 2005.
DOI : 10.1016/j.nbd.2005.05.021

K. Eun, S. Hwang, H. Jeon, S. Hyun, and H. Kim, Comparative Analysis of Human, Mouse, and Pig Glial Fibrillary Acidic Protein Gene Structures, Animal Biotechnology, vol.15, issue.2, pp.126-158, 2016.
DOI : 10.1186/1471-2202-15-95

L. Muyldermans and . Wyns, Crystal structure of a camel single-domain VH antibody fragment in complex with lysozyme, Nat. Struct. Biol, vol.38784355, pp.803-814, 1996.

V. K. Nguyen, S. Muyldermans, and R. Hamers, The specific variable domain of camel heavychain antibodies is encoded in the germline, J. Mol. Biol, pp.275-413, 1998.

A. Monegal, A. Olichon, N. Bery, T. Filleron, G. Favre et al., Single domain antibodies with VH hallmarks are positively selected during panning of llama (Lama glama) na??ve libraries, Developmental & Comparative Immunology, vol.36, issue.1, pp.150-156, 2012.
DOI : 10.1016/j.dci.2011.06.016

S. Muyldermans, C. Cambillau, and L. Wyns, Recognition of antigens by single-domain antibody fragments: the superfluous luxury of paired domains, Trends in Biochemical Sciences, vol.26, issue.4, pp.968-000401790, 2001.
DOI : 10.1016/S0968-0004(01)01790-X

K. B. Vu, M. A. Ghahroudi, L. Wyns, and S. Muyldermans, Comparison of llama VH sequences from conventional and heavy chain antibodies, Molecular Immunology, vol.34, issue.16-17, pp.1121-1152, 1997.
DOI : 10.1016/S0161-5890(97)00146-6

S. Muyldermans, T. Atarhouch, J. Saldanha, J. Barbosa, and R. Hamers, domain from naturally occurring camel heavy chain immunoglobulins lacking light chains, "Protein Engineering, Design and Selection", vol.7, issue.9, pp.1129-1164, 1994.
DOI : 10.1093/protein/7.9.1129

M. M. Harmsen, R. C. Ruuls, I. J. Nijman, T. Niewold, L. G. Frenken et al., Llama heavy-chain V regions consist of at least four distinct subfamilies revealing novel sequence features, Molecular Immunology, vol.37, issue.10, pp.579-90, 2000.
DOI : 10.1016/S0161-5890(00)00081-X

D. Saerens, J. Kinne, E. Bosmans, U. Wernery, S. Muyldermans et al., Single Domain Antibodies Derived from Dromedary Lymph Node and Peripheral Blood Lymphocytes Sensing Conformational Variants of Prostate-specific Antigen, Journal of Biological Chemistry, vol.45, issue.50, pp.51965-72, 2004.
DOI : 10.1016/S0022-2836(02)00705-2

C. A. Janeway, P. Travers, and M. Walport, The generation of diversity in immunoglobulins Virtually, 2001.