J. Latgé, Aspergillus fumigatus and Aspergillosis, Clin. Microbiol. Rev, vol.12, pp.310-50, 1999.
DOI : 10.1128/9781555815523

K. Kwon-chung and J. Sugui, Aspergillus fumigatus?What Makes the Species a Ubiquitous Human Fungal Pathogen? PLoS Pathog Available from, 2013.

M. Rodrigues, L. Travassos, K. Miranda, A. Franzen, S. Rozental et al., Human Antibodies against a Purified Glucosylceramide from Cryptococcus neoformans Inhibit Cell Budding and Fungal Growth, Infection and Immunity, vol.68, issue.12, pp.7049-60, 2000.
DOI : 10.1128/IAI.68.12.7049-7060.2000

URL : http://iai.asm.org/content/68/12/7049.full.pdf

L. Nimrichter and M. Rodrigues, Fungal Glucosylceramides: From Structural Components to Biologically Active Targets of New Antimicrobials. Front. Microbiol. [Internet] Available from, 2011.

W. Rittenour, M. Chen, E. Cahoon, and S. Harris, Control of Glucosylceramide Production and Morphogenesis by the Bar1 Ceramide Synthase in Fusarium graminearum, PLoS ONE, vol.279, issue.4, p.19385, 2011.
DOI : 10.1371/journal.pone.0019385.s003

S. Li, L. Du, G. Yuen, and S. Harris, Distinct Ceramide Synthases Regulate Polarized Growth in the Filamentous Fungus Aspergillus nidulans, Molecular Biology of the Cell, vol.17, issue.3, pp.1218-1245, 2006.
DOI : 10.1091/mbc.E05-06-0533

C. Fernandes, P. De-castro, A. Singh, F. Fonseca, M. Pereira et al., Functional characterization of the Aspergillus nidulans glucosylceramide pathway reveals that LCB ?8-desaturation and C9-methylation are relevant to filamentous growth, lipid raft localization and Psd1 defensin activity, Mol. Microbiol, 2016.

T. Oura and S. Kajiwara, Candida albicans sphingolipid C9-methyltransferase is involved in hyphal elongation, Microbiology, vol.156, issue.4, pp.1234-1277, 2010.
DOI : 10.1099/mic.0.033985-0

A. Singh, H. Wang, L. Silva, C. Na, M. Prieto et al., Methylation of glycosylated sphingolipid modulates membrane lipid topography and pathogenicity of Cryptococcus neoformans, Cellular Microbiology, vol.419, issue.2, pp.500-516, 2012.
DOI : 10.1038/nature00978

Y. Oguro, H. Yamazaki, M. Takagi, and H. Takaku, Antifungal activity of plant defensin AFP1 in Brassica juncea involves the recognition of the methyl residue in glucosylceramide of target pathogen Candida albicans, Current Genetics, vol.5, issue.2, pp.89-97, 2014.
DOI : 10.1007/BF02942184

D. Poeta, M. Nimrichter, L. Rodrigues, M. Luberto, and C. , Synthesis and Biological Properties of Fungal Glucosylceramide Available from, PLoS Pathog, vol.10, 2014.

J. Patton and R. Lester, The phosphoinositol sphingolipids of Saccharomyces cerevisiae are highly localized in the plasma membrane., Journal of Bacteriology, vol.173, issue.10, pp.3101-3109, 1991.
DOI : 10.1128/jb.173.10.3101-3108.1991

R. Dickson, C. Sumanasekera, and R. Lester, Functions and metabolism of sphingolipids in Saccharomyces cerevisiae, Progress in Lipid Research, vol.45, issue.6, pp.447-65, 2006.
DOI : 10.1016/j.plipres.2006.03.004

R. Dickson, Roles for Sphingolipids in Saccharomyces cerevisiae, Adv. Exp. Med. Biol, vol.688, pp.217-248, 2010.
DOI : 10.1007/978-1-4419-6741-1_15

L. Cowart and L. Obeid, Yeast sphingolipids: Recent developments in understanding biosynthesis, regulation, and function, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1771, issue.3, pp.421-452, 2007.
DOI : 10.1016/j.bbalip.2006.08.005

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1868558

S. Cheon, J. Bal, Y. Song, H. Hwang, A. Kim et al., Distinct roles of two ceramide synthases, CaLag1p and CaLac1p, in the morphogenesis of Candida albicans, Molecular Microbiology, vol.28, issue.4, pp.728-773, 2012.
DOI : 10.1038/emboj.2009.6

S. Smith and R. Lester, Inositol Phosphorylceramide, a Novel Substance and the Chief Member of a Major Group of Yeast Sphingolipids Containing a Single Inositol Phosphate, J. Biol. Chem, vol.249, pp.3395-405, 1974.

M. Megyeri, H. Riezman, M. Schuldiner, A. Futerman, C. Simenel et al., Making Sense of the Yeast Sphingolipid Pathway Glycosylinositolphosphoceramides in Aspergillus Fumigatus, J. Mol. Biol. Glycobiology, vol.42818, pp.4765-75, 2008.

K. Funato and H. Riezman, Vesicular and nonvesicular transport of ceramide from ER to the Golgi apparatus in yeast, The Journal of Cell Biology, vol.1486, issue.6, pp.949-60, 2001.
DOI : 10.1016/S0014-5793(99)01633-6

M. Nagiec, E. Nagiec, J. Baltisberger, G. Wells, R. Lester et al., Sphingolipid Synthesis as a Target for Antifungal Drugs, Journal of Biological Chemistry, vol.815, issue.15, pp.9809-9826, 1997.
DOI : 10.1093/bioinformatics/4.1.11

W. Hu, S. Sillaots, S. Lemieux, J. Davison, S. Kauffman et al., Essential Gene Identification and Drug Target Prioritization in Aspergillus fumigatus Available from, PLoS Pathog. [Internet], vol.3, 2007.
DOI : 10.1371/journal.ppat.0030024

URL : http://doi.org/10.1371/journal.ppat.0030024

J. Cheng, T. Park, A. Fischl, and X. Ye, Cell Cycle Progression and Cell Polarity Require Sphingolipid Biosynthesis in Aspergillus nidulans, Molecular and Cellular Biology, vol.21, issue.18, pp.6198-209, 2001.
DOI : 10.1128/MCB.21.18.6198-6209.2001

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC87337

S. Epstein, G. Castillon, Y. Qin, and H. Riezman, An essential function of sphingolipids in yeast cell division, Molecular Microbiology, vol.11, issue.6, pp.1018-1050, 2012.
DOI : 10.1002/yea.320110602

J. Do, T. Park, and D. Choi, A computational approach to the inference of sphingolipid pathways from the genome of Aspergillus fumigatus, Current Genetics, vol.44, issue.18, pp.134-175, 2005.
DOI : 10.7164/antibiotics.46.1414

F. Alvarez, L. Douglas, and J. Konopka, Sterol-Rich Plasma Membrane Domains in Fungi, Eukaryotic Cell, vol.6, issue.5, pp.755-63, 2007.
DOI : 10.1128/EC.00008-07

URL : http://ec.asm.org/content/6/5/755.full.pdf

N. Takeshita, Y. Higashitsuji, S. Konzack, and R. Fischer, Apical Sterol-rich Membranes Are Essential for Localizing Cell End Markers That Determine Growth Directionality in the Filamentous Fungus Aspergillus nidulans, Molecular Biology of the Cell, vol.19, issue.1, pp.339-51, 2008.
DOI : 10.1091/mbc.E07-06-0523

S. Levery, M. Toledo, A. Straus, and H. Takahashi, Comparative analysis of glycosylinositol phosphorylceramides from fungi by electrospray tandem mass spectrometry with low-energy collision-induced dissociation of Li+ adduct ions, Rapid Communications in Mass Spectrometry, vol.8, issue.23, pp.2240-58, 2001.
DOI : 10.1016/S1044-0305(97)00124-4

A. Kotz, J. Wagener, J. Engel, F. Routier, B. Echtenacher et al., The mitA gene of Aspergillus fumigatus is required for mannosylation of inositol-phosphorylceramide, but is dispensable for pathogenicity, Fungal Genetics and Biology, vol.47, issue.2, pp.169-78, 2010.
DOI : 10.1016/j.fgb.2009.10.001

J. Engel, P. Schmalhorst, A. Krüger, C. Müller, F. Buettner et al., zwitterionic glycoinositolphosphoceramide biosynthesis, Glycobiology, vol.25, issue.12, pp.1423-1453, 2015.
DOI : 10.1093/glycob/cwv059

F. Tekaia and J. Latgé, Aspergillus fumigatus: saprophyte or pathogen?, Current Opinion in Microbiology, vol.8, issue.4, pp.385-92, 2005.
DOI : 10.1016/j.mib.2005.06.017

J. Bruneau, T. Magnin, E. Tagat, R. Legrand, M. Bernard et al., Proteome analysis ofAspergillus fumigatus identifies glycosylphosphatidylinositol-anchored proteins associated to the cell wall biosynthesis, ELECTROPHORESIS, vol.275, issue.13, pp.2812-2835, 2001.
DOI : 10.1271/bbb.64.142

T. Fontaine, T. Magnin, A. Melhert, D. Lamont, J. Latgé et al., Structures of the glycosylphosphatidylinositol membrane anchors from Aspergillus fumigatus membrane proteins, Glycobiology, vol.13, issue.3, pp.169-77, 2003.
DOI : 10.1093/glycob/cwg004

C. Fankhauser, S. Homans, J. Thomas-oates, M. Mcconville, C. Desponds et al., Structures of glycosylphosphatidylinositol membrane anchors from Saccharomyces cerevisiae, J. Biol. Chem, vol.268, pp.26365-74, 1993.

A. Krüger, J. Engel, F. Buettner, and F. Routier, Aspergillus fumigatus Cap59-like protein A is involved in ?1,3-mannosylation of GPI-anchors, Glycobiology, vol.26, pp.30-38, 2016.

T. Kinoshita and M. Fujita, Biosynthesis of GPI-anchored proteins: special emphasis on GPI lipid remodeling, Journal of Lipid Research, vol.269, issue.1, pp.6-24, 2016.
DOI : 10.4161/cc.29379

Y. , T. Ichikawa, D. Miyagishi, Y. Kato, A. Umemura et al., Determination and physiological roles of the glycosylphosphatidylinositol lipid remodelling pathway in yeast, Mol. Microbiol, vol.88, pp.140-55, 2013.

J. Latgé, H. Kobayashi, J. Debeaupuis, M. Diaquin, J. Sarfati et al., Chemical and immunological characterization of the extracellular galactomannan of Aspergillus fumigatus, Infect. Immun, vol.62, pp.5424-5457, 1994.

D. Stynen, A. Goris, J. Sarfati, and J. Latgé, A new sensitive sandwich enzyme-linked immunosorbent assay to detect galactofuran in patients with invasive aspergillosis, J. Clin. Microbiol, vol.33, pp.497-500, 1995.

T. Fontaine, C. Simenel, G. Dubreucq, O. Adam, M. Delepierre et al., Molecular organization of the alkali-insoluble fraction of Aspergillus fumigatus cell wall, Journal of Biological Chemistry, vol.275, pp.27594-607, 2000.
DOI : 10.1074/jbc.M909975199

W. Zhong, M. Jeffries, and N. Georgopapadakou, Inhibition of Inositol Phosphorylceramide Synthase by Aureobasidin A in Candida and Aspergillus Species, Antimicrobial Agents and Chemotherapy, vol.44, issue.3, pp.651-654, 2000.
DOI : 10.1128/AAC.44.3.651-653.2000

A. Caretti, R. Torelli, F. Perdoni, M. Falleni, D. Tosi et al., Inhibition of ceramide de novo synthesis by myriocin produces the double effect of reducing pathological inflammation and exerting antifungal activity against A. fumigatus airways infection, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1860, issue.6
DOI : 10.1016/j.bbagen.2016.02.014

L. Guimarães, M. Toledo, F. Ferreira, A. Straus, and H. Takahashi, Structural diversity and biological significance of glycosphingolipids in pathogenic and opportunistic fungi

A. Farnoud, A. Toledo, J. Konopka, D. Poeta, M. London et al., Raft-Like Membrane Domains in Pathogenic Microorganisms, Curr. Top. Membr, vol.75, pp.233-68, 2015.
DOI : 10.1016/bs.ctm.2015.03.005

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5023442

J. Palma-guerrero, I. Huang, H. Jansson, J. Salinas, L. Lopez-llorca et al., Chitosan permeabilizes the plasma membrane and kills cells of Neurospora crassa in an energy dependent manner, Fungal Genetics and Biology, vol.46, issue.8, pp.585-94, 2009.
DOI : 10.1016/j.fgb.2009.02.010

J. Palma-guerrero, J. Lopez-jimenez, A. Pérez-berná, I. Huang, H. Jansson et al., Membrane fluidity determines sensitivity of filamentous fungi to chitosan, Molecular Microbiology, vol.6, issue.4, pp.1021-1053, 2010.
DOI : 10.1016/0005-2760(85)90271-1

R. Pasrija, S. Panwar, and R. Prasad, Multidrug Transporters CaCdr1p and CaMdr1p of Candida albicans Display Different Lipid Specificities: both Ergosterol and Sphingolipids Are Essential for Targeting of CaCdr1p to Membrane Rafts, Antimicrobial Agents and Chemotherapy, vol.52, issue.2, pp.694-704, 2008.
DOI : 10.1128/AAC.00861-07

K. Healey, K. Challa, T. Edlind, and S. Katiyar, Sphingolipids Mediate Differential Echinocandin Susceptibility in Candida albicans and Aspergillus nidulans, Antimicrobial Agents and Chemotherapy, vol.59, issue.6, pp.3377-84, 2015.
DOI : 10.1128/AAC.04667-14

URL : http://aac.asm.org/content/59/6/3377.full.pdf

A. Rella, A. Farnoud, D. Poeta, and M. , Plasma membrane lipids and their role in fungal virulence, Progress in Lipid Research, vol.61, pp.63-72, 2016.
DOI : 10.1016/j.plipres.2015.11.003

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4733445

C. Zhu, M. Wang, W. Wang, R. Ruan, H. Ma et al., Glucosylceramides are required for mycelial growth and full virulence in Penicillium digitatum, Biochemical and Biophysical Research Communications, vol.455, issue.3-4, pp.165-71, 2014.
DOI : 10.1016/j.bbrc.2014.10.142

S. Noble, S. French, L. Kohn, V. Chen, and A. Johnson, Systematic screens of a Candida albicans homozygous deletion library decouple morphogenetic switching and pathogenicity, Nature Genetics, vol.25, issue.7, pp.590-598, 2010.
DOI : 10.1091/mbc.12.11.3631

J. Shea, T. Kechichian, C. Luberto, D. Poeta, and M. , The Cryptococcal Enzyme Inositol Phosphosphingolipid-Phospholipase C Confers Resistance to the Antifungal Effects of Macrophages and Promotes Fungal Dissemination to the Central Nervous System, Infection and Immunity, vol.74, issue.10, pp.5977-88, 2006.
DOI : 10.1128/IAI.00768-06

S. Bozza, C. Clavaud, G. Giovannini, T. Fontaine, A. Beauvais et al., Immune Sensing of Aspergillus fumigatus Proteins, Glycolipids, and Polysaccharides and the Impact on Th Immunity and Vaccination, The Journal of Immunology, vol.183, issue.4, pp.2407-2421, 2009.
DOI : 10.4049/jimmunol.0900961

L. Albacker, V. Chaudhary, Y. Chang, H. Kim, Y. Chuang et al., Invariant natural killer T cells recognize a fungal glycosphingolipid that can induce airway hyperreactivity, Nature Medicine, vol.185, issue.10, pp.1297-304, 2013.
DOI : 10.4049/jimmunol.1001116

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4079117

G. Stucture-of, ,2)-?-Man-(1,2)-?-Man-(1,2)-?-Man-(1,6)-?-GlcN-(1,4)-Ins-P-Cer GM polysaccharide is linked to the fourth mannose residue though a glycosidic linkage

G. Stuctures-of, ,2)-?-Man-(1,2)-?-Man-(1,2)-?-Man-(1,6)-?-GlcN-(1,4)-Ins-P-Cer ?-Man-(1,2)-?-Man-(1,2)-?-Man-(1,2)-?-Man, )-Ins-P-Cer Proteins are linked to the third mannose of the GPI anchor through a phosphoethanolamine group