L. Klei, D. Pinto, J. Bacchelli, and E. Baird-g, Individual common variants exert weak effects on the risk for autism spectrum disorderspi mC, Visscher Pm. Large-scale genom- 35. ics unveils the genetic architecture of psychiatric disorders, hum mol genet Nat Neurosci, vol.342117, pp.4781-92782, 2012.

. Huguet-g, E. Ey, and T. Bourgeron, The genetic landscapes of autism spec- 36. trum disorders. annu rev genomics hum genet 2013, pp.191-213

J. Peca, C. Feliciano, J. Ting, W. Wang, and W. Mf, Shank3 mutant mice display autistic-like behaviours and striatal dysfunction, Nature, vol.90, issue.7344, pp.437-479, 2011.
DOI : 10.1152/jn.00070.2003

N. Takahashi, of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication autistic- 39. like social behaviour in Shank2-mutant mice improved by restoring NmDa receptor function, mol autism Nature, vol.1486, issue.7402, pp.15261-15266, 2010.

. Schmeisser-mj, E. Ey, S. Wegener, and J. Bockmann, Kuebler a, et al. autistic-like behaviours and hyperactivity in mice lacking ProSaP1/Shank2, Nature, vol.40486, issue.7402, pp.256-60, 2012.

K. Tabuchi, J. Blundell, . Etherton-mr, . Hammer-re, and X. Liu, A Neuroligin-3 Mutation Implicated in Autism Increases Inhibitory Synaptic Transmission in Mice, Science, vol.562, issue.1, pp.71-77, 2007.
DOI : 10.1113/jphysiol.2004.078915

F. Varoqueaux, reduced social interaction and ultrasonic communication in a mouse model of monogenic heritable autism, Proc Natl acad Sci uSa, vol.105, pp.1710-1725, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00408808

F. Varoqueaux, Neuroligins Determine Synapse Maturation and Function, Neuron, vol.51, issue.6, pp.741-54, 2006.
DOI : 10.1016/j.neuron.2006.09.003

URL : http://doi.org/10.1016/j.neuron.2006.09.003

S. Baudouin, J. , S. , L. Zhou, K. et al., Shared synaptic pathophysiology in syndromic and nonsyndromic rodent models of autism ShaNK3 overexpression causes manic-like behaviour with unique pharmacogenetic properties, Science Nature, vol.338503, issue.457474, pp.128-3272, 2012.

J. Silverman, Y. M. Lord, C. Crawley, and J. , Behavioural phenotyping assays for mouse models of autism, Nature Reviews Neuroscience, vol.63, issue.7, pp.490-502, 2010.
DOI : 10.3389/neuro.04.004.2008

E. Ey, C. Leblond, and T. Bourgeron, Behavioral profiles of mouse mod- 47. els for autism spectrum disorders Shcheglovitov a al. ShaNK3 and IgF1 restore synaptic deficits in neurons from 22q13 deletion syndrome patients, autism res Nature, vol.4503, issue.7475, pp.5-16267, 2011.

C. Boissart, P. Georges, J. E. Darville-h, and . Delorme-r, Differentiation from human pluripotent stem cells of cortical neurons of the superficial layers amenable to psychiatric disease modeling and high-throughput drug screening Tebbenkamp aT, muhle ra, 50. et al. Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism, Transl Psychiatry Cell, vol.3155, pp.997-1007, 2013.

N. Parikshak, . Luo-r, . Zhang-a, . Won-h, J. Lowe et al., Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism Lese- 52. martin C, et al. Quantitative proteomic and genetic analyses of the schizophrenia susceptibility factor dysbindin identify novel roles of the biogenesis of lysosome-related organelles complex 1, Cell J Neurosci, vol.15532, pp.1008-213697, 2012.
DOI : 10.1016/j.cell.2013.10.031

URL : http://doi.org/10.1016/j.cell.2013.10.031

D. Pinto, . Pagnamenta-at, L. Klei, D. , and R. R. , et al. Functional impact of global rare copy number variation in autism spectrum disorders, Nature, vol.53466, issue.7304, pp.368-72, 2010.

I. Voineagu, X. Wang, P. Johnston, J. Lowe, Y. Tian et al., Transcriptomic analysis of autistic brain reveals convergent molecular pathology, Nature, vol.38, issue.7351, pp.380-384, 2011.
DOI : 10.1038/nature06757

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3607626

N. Bm, Y. Kou, L. Liu, K. Samocha, and . Sabo-a, Patterns and rates of exonic de novo mutations in autism spectrum disorders, Nature, vol.11485, issue.7397, pp.242-247, 2012.

O. Bj, L. Vives, S. Girirajan, E. Karakoc, N. Krumm et al., Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations, Nature, vol.12485, issue.7397, pp.246-50, 2012.

S. Sanders and J. Murdoch, Willsey aJ, et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism, Nature, vol.13485, issue.7397, pp.237-278, 2012.

. Willemsen-mh, genome sequencing identifies major causes of severe intellectual disability, Nature, vol.511, issue.7509, pp.344-351, 2014.

S. Sanders and J. Murdoch, Willsey aJ, et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism, Nature, vol.15485, issue.7397, pp.237-278, 2012.

C. Campbell and E. Eichler, Properties and rates of germline mutations in humans, Trends in Genetics, vol.29, issue.10, pp.575-84, 2013.
DOI : 10.1016/j.tig.2013.04.005

. Toro-r, . Konyukh-m, . Delorme-r, C. Leblond, P. Chaste et al., et al. Key role for gene dosage and synaptic homeostasis in autism spectrum disorders, Trends genet, vol.1726, pp.363-72, 2010.

F. Sa, Somatic mosaicism and disease Poduri a, Evrony gD Somatic mutation, 19. genomic variation, and neurological disease, Curr Biol Science, vol.24341, issue.18, pp.577-811237758, 2013.

X. Zhu, S. Petrovski, and D. Goldstein, One gene, many neuropsychiatric disorders: lessons from Mendelian diseases, Nature Neuroscience, vol.136, issue.6, pp.773-81, 2014.
DOI : 10.1021/ja411338t

E. Lim, S. Raychaudhuri, S. Sanders, and C. Stevens, Rare Complete Knockouts in Humans: Population Distribution and Significant Role in Autism Spectrum Disorders, Neuron, vol.77, issue.2, pp.235-277, 2013.
DOI : 10.1016/j.neuron.2012.12.029

URL : http://doi.org/10.1016/j.neuron.2012.12.029

T. Yu, . Chahrour-mh, . Coulter-me, S. Jiralerspong, and K. Okamura-ikeda, ataman B, et al. using whole-exome sequencing to identify inherited causes of autism, Neuron, vol.2277, pp.259-73, 2013.

. Morrow-em, S. Yoo, S. Flavell, T. Kim, and Y. Lin, Identifying autism loci and genes by tracing recent shared ancestry Itsara a, et al. a recurrent 16p12.1 microdeletion supports a twohit model for severe developmental delay stein a, et al. Phenotypic heterogeneity of genomic disorders and rare copy-number variants, Science Nat genet N Engl J med, vol.2332142367, issue.24, pp.218-241, 2008.

C. Leblond, H. J. Delorme-r, C. Proepper, and C. Betancur, huguet g, et al. genetic and functional analyses of ShaNK2 mutations suggest a multiple hit model of autism spectrum disorders, PLoS genet, vol.268, p.1002521, 2012.

B. Chilian and T. Bierhals, in a patient with intellectual disability and language impairment supports genetic epistasis of the two loci, Clinical Genetics, vol.390, issue.2, pp.560-565, 2013.
DOI : 10.1016/S0076-6879(04)90029-8

L. Klei, S. Sanders, V. Lowe, J. Willsey-aj-gaugler, T. Klei et al., Common genetic variants, acting additively, are a major source of risk for autism Cross-Disorder group of the Psychiatric genomics Consortium,Lee 29 al. genetic relationship between five psychiatric disorders estimated from genome-wide SNPs, mol autism Nat genet Nat genet, vol.2834546, issue.9, pp.984-94881, 2012.

I. Deary, Y. J. Davies-g, S. Harris, . Tenesa-a, and D. Liewald, 31. genetic contributions to stability and change in intelligence from childhood to old age, Nature, vol.482, issue.7384, pp.212-227, 2012.

. Davies-g, . Tenesa-a, . Payton-a, J. Yang, S. Harris et al., Genome-wide association studies establish that human intelligence is highly heritable and polygenic, Molecular Psychiatry, vol.460, issue.10, pp.996-1005, 2011.
DOI : 10.1007/s10709-008-9301-7

J. Yang, B. Benyamin, B. Mcevoy, and S. Gordon, Nyholt Dr, et al. Common SNPs explain a large proportion of the heritability for human height, Nat genet, vol.3342, pp.565-574, 2010.

J. Nord, PSYChIaTrY·VOL 70 NO 1·2016 and expansion of old concepts based on new genetic evidence, Lancet Neurol, vol.12, pp.406-420, 2013.

Y. Kim and S. Mw, recent challenges to the psychiatric diagnostic 69. nosology: a focus on the genetics and genomics of neurodevelopmental disorders Critical issues in cultural neuropsychology: profit from 70, Int J Epidemiol diversity. Neuropsychol rev, vol.4318, pp.465-75, 2008.

S. Chari and I. Dworkin, The conditional nature of genetic interactions: the 71. consequences of wild-type backgrounds on mutational interactions in a genome-wide modifier screen:e1003661. mcCarroll Sa, Feng g, hyman SE. genome-scale neurogenetics: 72. methodology and meaning, PLoS genet Nat Neurosci, vol.917, pp.756-63, 2013.

J. Poline, J. Breeze, S. Gorgolewski, K. Halchenko, and Y. , hanke m, et al. Data sharing in neuroimaging research, Front Neuroinform, vol.736, p.9, 2012.

. Joober-r, N. Schmitz, L. Boksa, and P. , Publication bias: What are the challenges and can they be overcome?, Journal of Psychiatry & Neuroscience, vol.37, issue.3, pp.149-52, 2012.
DOI : 10.1503/jpn.120065

P. Wicks, T. Vaughan, L. Hood, and F. Sh, accelerated clini- 75. cal discovery using self-reported patient data collected online and a patient-matching algorithm Predictive, personalized, preventive, participa- 76. tory (P4) cancer medicine Changing perceptions: The power of autism, Nat Biotechnol Nat rev Clin Oncol Nature, vol.298479, issue.777371, pp.411-14184, 2011.

L. Waterhouse, Why Autism Must be Taken Apart, Journal of Autism and Developmental Disorders, vol.12, issue.5, pp.1788-92, 2014.
DOI : 10.1007/s12311-013-0483-x

I. Kohane and E. A. , Can we measure autism? Sci Transl med 79, pp.209-227, 2013.
DOI : 10.1126/scitranslmed.3007340

O. Bj, L. Vives, W. Fu, J. Egertson, and I. Stanaway, Phelps 56. Ig, et al. multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders, Science, vol.338, pp.1619-1641, 2012.

. Novarino-g, P. El-fishawy, K. Na, and S. Em, Schroth J, et al. mutations in BCKD-kinase lead to a potentially treatable form of autism with epilepsy, Science, vol.57338, pp.394-401, 2012.

. Kelleher-rj, B. Iii, and . Mf, The Autistic Neuron: Troubled Translation?, Cell, vol.135, issue.3, pp.401-407, 2008.
DOI : 10.1016/j.cell.2008.10.017

. Costa-mattioli-m and . Monteggia-lm, mTOR complexes in neurodevelopmental and neuropsychiatric disorders, Nature Neuroscience, vol.22, issue.11, pp.1537-1580, 2013.
DOI : 10.1016/j.neuropharm.2011.08.034

W. Ba, J. Van-der-raadt, N. Kasri, and N. , Rho GTPase signaling at the synapse: Implications for intellectual disability, Experimental Cell Research, vol.319, issue.15, pp.2368-74, 2013.
DOI : 10.1016/j.yexcr.2013.05.033

T. Bourgeron, A synaptic trek to autism, Current Opinion in Neurobiology, vol.19, issue.2, pp.231-235, 2009.
DOI : 10.1016/j.conb.2009.06.003

S. Jamain, . Quach-h, C. Betancur, . Rastam-m, C. Colineaux et al., et al. mutations of the X-linked genes encoding neuroligins NLgN3 and NLgN4 are associated with autism, Nat genet, vol.6234, pp.27-36, 2003.

D. Cm, C. Betancur, B. Tm, J. Bockmann, and P. Chaste, Fauchereau F, et al. mutations in the gene encoding the synaptic scaffolding protein ShaNK3 are associated with autism spectrum disorders, Nat genet, vol.6339, pp.25-32, 2007.

X. Liu, mapping autism risk loci using genetic linkage and chromosomal rearrangements ramocki mB, Zoghbi hY. Failure of neuronal homeostasis results 65. in common neuropsychiatric phenotypes, Nat genet Nature, vol.39455, issue.7215, pp.319-347, 2007.

W. Spooren, L. Lindemann, and L. Santarelli, Synapse dysfunction in autism: a molecular medicine approach to drug discovery in neurodevelopmental disorders, Trends in Pharmacological Sciences, vol.33, issue.12, pp.669-84, 2012.
DOI : 10.1016/j.tips.2012.09.004

. Delorme-r, E. Ey, L. Toro-r, C. Bourgeron, and T. , Progress toward treatments for synaptic defects in autism Developmental brain dysfunction: revival, Nat med, vol.6719, pp.685-94, 2013.