M. C. Bonaglia, Disruption of the ProSAP2 Gene in a t(12;22)(q24.1;q13.3) Is Associated with the 22q13.3 Deletion Syndrome, The American Journal of Human Genetics, vol.69, issue.2, pp.261-268, 2001.
DOI : 10.1086/321293

A. Kolevzon, Phelan-McDermid syndrome: a review of the literature and practice parameters for medical assessment and monitoring, Journal of Neurodevelopmental Disorders, vol.6, issue.1, 2014.
DOI : 10.1186/2040-2392-4-17

A. C. Wong, Molecular characterization of a 130-kb terminal microdeletion at 22q in a child with mild mental retardation, Am. J. Hum. Genet, vol.60, pp.113-120, 1997.

T. M. Boeckers, J. Bockmann, M. R. Kreutz, E. D. Gundelfinger, and . Prosap, ProSAP/Shank proteins - a family of higher order organizing molecules of the postsynaptic density with an emerging role in human neurological disease, Journal of Neurochemistry, vol.274, issue.5, pp.903-910, 2002.
DOI : 10.1177/002215540104900511

S. Lim, Characterization of the Shank Family of Synaptic Proteins, Journal of Biological Chemistry, vol.122, issue.41, pp.29510-29518, 1999.
DOI : 10.1016/S0896-6273(00)80096-3

S. Naisbitt, Shank, a Novel Family of Postsynaptic Density Proteins that Binds to the NMDA Receptor/PSD-95/GKAP Complex and Cortactin, Neuron, vol.23, issue.3, pp.569-582, 1999.
DOI : 10.1016/S0896-6273(00)80809-0

T. Bourgeron, A synaptic trek to autism, Current Opinion in Neurobiology, vol.19, issue.2, pp.231-234, 2009.
DOI : 10.1016/j.conb.2009.06.003

R. Delorme, Progress toward treatments for synaptic defects in autism, Nature Medicine, vol.232, issue.6, pp.685-694, 2013.
DOI : 10.1016/j.resp.2007.08.009

URL : https://hal.archives-ouvertes.fr/pasteur-01470299

A. M. Grabrucker, M. J. Schmeisser, M. Schoen, and T. M. Boeckers, Postsynaptic ProSAP/Shank scaffolds in the cross-hair of synaptopathies, Trends in Cell Biology, vol.21, issue.10, pp.594-603, 2011.
DOI : 10.1016/j.tcb.2011.07.003

A. Guilmatre, G. Huguet, R. Delorme, and T. Bourgeron, genes in neuropsychiatric disorders, Developmental Neurobiology, vol.32, issue.Part 1, pp.113-122, 2014.
DOI : 10.1523/JNEUROSCI.6107-11.2012

URL : http://onlinelibrary.wiley.com/doi/10.1002/dneu.22128/pdf

C. S. Leblond, Meta-analysis of SHANK Mutations in Autism Spectrum Disorders: A Gradient of Severity in Cognitive Impairments, PLoS Genetics, vol.22, issue.6, p.10, 2014.
DOI : 10.1371/journal.pgen.1004580.s019

URL : https://hal.archives-ouvertes.fr/inserm-01061498

M. C. Bonaglia, Identification of a recurrent breakpoint within the SHANK3 gene in the 22q13.3 deletion syndrome, Journal of Medical Genetics, vol.43, issue.10, pp.822-828, 2006.
DOI : 10.1136/jmg.2005.038604

C. M. Durand, Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders, Nature Genetics, vol.28, issue.1, pp.25-27, 2007.
DOI : 10.1038/ng1933

URL : https://hal.archives-ouvertes.fr/inserm-00126175

D. Misceo, A translocation between Xq21.33 and 22q13.33 causes an intragenic SHANK3 deletion in a woman with Phelan-McDermid syndrome and hypergonadotropic hypogonadism, American Journal of Medical Genetics Part A, vol.60, issue.2, pp.403-408, 2011.
DOI : 10.1038/ejhg.2008.107

S. M. Sarasua, Association between deletion size and important phenotypes expands the genomic region of interest in Phelan-McDermid syndrome (22q13 deletion syndrome), Journal of Medical Genetics, vol.48, issue.11, pp.761-766, 2011.
DOI : 10.1136/jmedgenet-2011-100225

S. M. Sarasua, 22q13.2q13.32 genomic regions associated with severity of speech delay, developmental delay, and physical features in Phelan???McDermid syndrome, Genetics in Medicine, vol.13, issue.4, pp.318-328, 2014.
DOI : 10.1101/gr.082701.108

E. Blaurock-busch, O. R. Amin, and T. Rabah, Heavy metals and trace elements in hair and urine of a sample of arab children with autistic spectrum disorder, Maedica (Buchar), vol.6, pp.247-257, 2011.

S. Faber, G. M. Zinn, J. C. Kern, and H. M. Kingston, The plasma zinc/serum copper ratio as a biomarker in children with autism spectrum disorders, Biomarkers, vol.271, issue.3, pp.171-180, 2009.
DOI : 10.1016/j.jns.2008.04.002

M. Jen and A. C. Yan, Syndromes associated with nutritional deficiency and excess, Clinics in Dermatology, vol.28, issue.6, pp.669-685, 2010.
DOI : 10.1016/j.clindermatol.2010.03.029

L. Priya, M. D. Geetha, and A. , Level of Trace Elements (Copper, Zinc, Magnesium and Selenium) and Toxic Elements (Lead and Mercury) in the Hair and Nail of Children with Autism, Biological Trace Element Research, vol.26, issue.2, pp.148-158, 2011.
DOI : 10.1016/S0091-3057(98)00023-9

A. J. Russo, Plasma Copper and Zinc Concentration in Individuals with Autism Correlate with Selected Symptom Severity, Nutrition and Metabolic Insights, vol.5, pp.41-47, 2012.
DOI : 10.4137/NMI.S8761

URL : http://doi.org/10.4137/nmi.s8761

W. J. Walsh, A. Usman, and J. Tarpey, Disordered metal metabolism in a large autism population New Research: Abstract NR109, Proc. of the American Psychological Association, pp.5-10, 2001.

H. Yasuda, K. Yoshida, Y. Yasuda, and T. Tsutsui, Infantile zinc deficiency: Association with autism spectrum disorders, Scientific Reports, vol.4, issue.1, pp.1-5, 2011.
DOI : 10.3793/jaam.4.38

URL : http://doi.org/10.1038/srep00129

H. Yasuda, M. Kobayashi, Y. Yasuda, and T. Tsutsui, Estimation of autistic children by metallomics analysis, Scientific Reports, vol.4, issue.1, pp.1-7, 2013.
DOI : 10.1080/026520399283650

S. Grabrucker, Zinc deficiency dysregulates the synaptic ProSAP/Shank scaffold and might contribute to autism spectrum disorders, Brain, vol.137, issue.1, pp.137-152, 2014.
DOI : 10.1093/brain/awt303

URL : http://doi.org/10.1093/brain/awt303

G. Vela, Zinc in Gut-Brain Interaction in Autism and Neurological Disorders, Neural Plasticity, vol.11, issue.1, pp.1-15, 2015.
DOI : 10.1016/j.jtemb.2014.05.006

URL : http://doi.org/10.1155/2015/972791

W. Maret, Zinc and human disease. Metal Ions in Life Sci, pp.389-414, 2013.

S. Pfaender and A. M. Grabrucker, Characterization of biometal profiles in neurological disorders, Metallomics, vol.8, issue.4, pp.960-977, 2014.
DOI : 10.2147/CIA.S27983

N. Roohani, R. Hurrell, R. Kelishadi, and R. Schulin, Zinc and its importance for human health: An integrative review, J. Res. Med. Sci, vol.18, pp.144-157, 2013.

B. Szewczyk, Zinc homeostasis and neurodegenerative disorders, Frontiers in Aging Neuroscience, vol.5, 2013.
DOI : 10.3389/fnagi.2013.00033

URL : http://doi.org/10.3389/fnagi.2013.00033

H. Yasuda and T. Tsutsui, Assessment of Infantile Mineral Imbalances in Autism Spectrum Disorders (ASDs), International Journal of Environmental Research and Public Health, vol.10, issue.11, pp.6027-6043, 2013.
DOI : 10.1371/journal.pone.0031354

L. S. Hurley and H. Swenerton, Congenital Malformations Resulting from Zinc Deficiency in Rats., Experimental Biology and Medicine, vol.123, issue.3, pp.692-696, 1966.
DOI : 10.3181/00379727-123-31578

S. Hagmeyer, J. C. Haderspeck, and A. M. Grabrucker, Behavioral impairments in animal models for zinc deficiency, Frontiers in Behavioral Neuroscience, vol.29, pp.1-16, 2014.
DOI : 10.1016/j.nut.2012.09.002

S. Grabrucker, T. M. Boeckers, and A. M. Grabrucker, Gender Dependent Evaluation of Autism like Behavior in Mice Exposed to Prenatal Zinc Deficiency, Frontiers in Behavioral Neuroscience, vol.1, issue.443, pp.1-15, 2016.
DOI : 10.1038/srep00129

R. J. Cousins and R. J. Mcmahon, Integrative aspects of zinc transporters, J. Nutr, vol.130, pp.1384-1387, 2000.
DOI : 10.1007/0-306-47466-2_1

G. K. Andrews, , the acrodermatitis enteropathica gene, Biochemical Society Transactions, vol.36, issue.6, pp.1242-1246, 2008.
DOI : 10.1042/BST0361242

Z. Vaghri, S. Barr, H. Wong, G. Chapman, and C. Hertzman, Age-Based Differences in Hair Zinc of Vancouver Preschoolers, Biological Trace Element Research, vol.6, issue.S1, pp.21-30, 2008.
DOI : 10.2105/AJPH.83.1.94

A. Massadeh, A. W. El-rjoob, and H. Smadi, Lead, cadmium, copper, zinc, iron, and calcium in human hair as a function of gender, age, smoking, and hair dyeing, Toxicological & Environmental Chemistry, vol.54, issue.3, pp.494-503, 2011.
DOI : 10.1515/CCLM.2005.070

A. Viktorinova, Changed Plasma Levels of Zinc and Copper to Zinc Ratio and Their Possible Associations with Parent- and Teacher-Rated Symptoms in Children with Attention-Deficit Hyperactivity Disorder, Biological Trace Element Research, vol.29, issue.1, pp.1-7, 2016.
DOI : 10.1038/ejcn.2012.177

T. Iwao, Differentiation of Human Induced Pluripotent Stem Cells into Functional Enterocyte-like Cells Using a Simple Method, Drug Metabolism and Pharmacokinetics, vol.29, issue.1, pp.44-51, 2014.
DOI : 10.2133/dmpk.DMPK-13-RG-005

R. A. Hodin, A. Shei, and S. Meng, Transcriptional activation of the human villin gene during enterocyte differentiation,, Journal of Gastrointestinal Surgery, vol.1, issue.5, pp.433-438, 1997.
DOI : 10.1016/S1091-255X(97)80130-8

R. S. Saad, Z. Ghorab, M. A. Khalifa, and M. Xu, CDX2 as a marker for intestinal differentiation: Its utility and limitations, World Journal of Gastrointestinal Surgery, vol.3, issue.11, pp.159-166, 2011.
DOI : 10.4240/wjgs.v3.i11.159

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3240675

J. Dufner-beattie, Y. M. Kuo, J. Gitschier, and G. K. Andrews, The Adaptive Response to Dietary Zinc in Mice Involves the Differential Cellular Localization and Zinc Regulation of the Zinc Transporters ZIP4 and ZIP5, Journal of Biological Chemistry, vol.17, issue.47, pp.49082-49090, 2004.
DOI : 10.1080/07315724.1998.10718735

Z. L. Huang, J. Dufner-beattie, and G. Andrews, Expression and regulation of SLC39A family zinc transporters in the developing mouse intestine, Developmental Biology, vol.295, issue.2, pp.571-579, 2006.
DOI : 10.1016/j.ydbio.2006.03.045

S. Bejjani, R. Pullakhandam, R. Punjal, and K. M. Nair, Gastric digestion of pea ferritin and modulation of its iron bioavailability by ascorbic and phytic acids in caco-2 cells, World Journal of Gastroenterology, vol.13, issue.14, pp.2083-2088, 2007.
DOI : 10.3748/wjg.v13.i14.2083

V. Iyengar, R. Pullakhandam, and K. M. Nair, Dietary Ligands as Determinants of Iron-Zinc Interactions at the Absorptive Enterocyte, Journal of Food Science, vol.137, issue.8, pp.260-264, 2010.
DOI : 10.1021/jf0203040

K. Sreenivasulu, P. Raghu, P. Ravinder, and K. M. Nair, Effect of Dietary Ligands and Food Matrices on Zinc Uptake in Caco-2 Cells: Implications in Assessing Zinc Bioavailability, Journal of Agricultural and Food Chemistry, vol.56, issue.22, pp.10967-10972, 2008.
DOI : 10.1021/jf802060q

S. Grabrucker, The PSD protein ProSAP2/Shank3 displays synapto-nuclear shuttling which is deregulated in a schizophrenia-associated mutation, Experimental Neurology, vol.253, pp.126-137, 2014.
DOI : 10.1016/j.expneurol.2013.12.015

M. H. Yoo, T. Y. Kim, Y. H. Yoon, and J. Koh, Autism phenotypes in ZnT3 null mice: Involvement of zinc dyshomeostasis, MMP-9 activation and BDNF upregulation, Scientific Reports, vol.32, issue.1, p.28548, 2016.
DOI : 10.1038/emboj.2013.96

A. J. Russo, Increased Copper in Individuals with Autism Normalizes Post Zinc Therapy More Efficiently in Individuals with Concurrent GI Disease, Nutr Metab Insights, vol.4, pp.49-54, 2011.

M. C. Phelan, Deletion 22q13.3 syndrome, Orphanet Journal of Rare Diseases, vol.3, issue.1, 2008.
DOI : 10.1186/1750-1172-3-14

K. M. Hambidge, M. J. Goodall, C. Stall, and J. Pritts, Post-prandial and daily changes in plasma zinc, J. Trace Elem. Electrolytes Health Dis, vol.3, pp.55-57, 1989.

A. Takeda, S. Takefuta, S. Okada, and N. Oku, 45190 | DOI: 10.1038/srep45190 53 Relationship between brain zinc and transient learning impairment of adult rats fed zinc-deficient diet, Brain Res, vol.7, issue.859, pp.352-357, 2000.

A. Takeda, A. Minami, S. Takefuta, M. Tochigi, and N. Oku, Zinc homeostasis in the brain of adult rats fed zinc-deficient diet, Journal of Neuroscience Research, vol.87, issue.5, pp.447-452, 2001.
DOI : 10.1007/BF00518726

A. M. Grabrucker, Environmental factors in autism. Front, Psychiatry, vol.201, pp.1-13, 2012.

J. Dufner-beattie, Encodes a Tissue-specific, Zinc-regulated Zinc Transporter in Mice, Journal of Biological Chemistry, vol.129, issue.35, pp.33474-33481, 2003.
DOI : 10.1093/hmg/7.13.2063

N. Edwards, Mental disturbances related to metals Psychiatric Presentations of Medical Illness: Somatopsychic Disorders, pp.283-308, 1980.

T. D. Bohane, E. Cutz, J. R. Hamilton, and D. G. Gall, Acrodermatitis enteropathica, zinc, and the Paneth cell. A case report with family studies, Gastroenterol, vol.73, pp.587-592, 1977.

M. Larregue, J. J. Baudon, J. L. Fontaine, G. Feldmann, and R. Laplane, Acrodermatitis enteropathica; zinc sulfate therapy], Ann. Dermatol. Venereol, vol.104, pp.737-744, 1977.

A. Ohlsson, ACRODERMATITIS ENTEROPATHICA, Acta Paediatrica, vol.133, issue.2, pp.269-273, 1981.
DOI : 10.1111/j.1365-2133.1976.tb04355.x

J. Dufner-beattie, Z. L. Huang, J. Geiser, W. Xu, and G. Andrews, Generation and Characterization of Mice Lacking the Zinc Uptake Transporter ZIP3, Molecular and Cellular Biology, vol.25, issue.13, pp.5607-5615, 2005.
DOI : 10.1128/MCB.25.13.5607-5615.2005

D. M. Cochoy, Phenotypic and functional analysis of SHANK3 stop mutations identified in individuals with ASD and/or ID, Molecular Autism, vol.200, issue.1, 2015.
DOI : 10.1016/j.aanat.2015.03.006

A. S. Prasad, Discovery of Human Zinc Deficiency: Its Impact on Human Health and Disease, Advances in Nutrition: An International Review Journal, vol.4, issue.2, pp.176-190, 2013.
DOI : 10.3945/an.112.003210

M. J. Schmeisser, Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2, Nature, vol.10, pp.256-260, 2012.
DOI : 10.1111/j.1601-183X.2010.00623.x

URL : https://hal.archives-ouvertes.fr/pasteur-01470252

M. Munakata, A preliminary analysis of trace elements in the scalp hair of patients with severe motor disabilities receiving enteral nutrition, Brain and Development, vol.28, issue.8, pp.521-525, 2006.
DOI : 10.1016/j.braindev.2006.02.004

Z. Vaghri, H. Wong, S. I. Barr, G. E. Chapman, and C. Hertzman, Associations of Socio-demographic and Behavioral Variables with Hair Zinc of Vancouver Preschoolers, Biological Trace Element Research, vol.6, issue.3, pp.1398-1412, 2011.
DOI : 10.1016/S1047-2797(96)00104-4

L. Linta, Rat Embryonic Fibroblasts Improve Reprogramming of Human Keratinocytes into Induced Pluripotent Stem Cells, Stem Cells and Development, vol.21, issue.6, pp.965-976, 2012.
DOI : 10.1089/scd.2011.0026

S. Hagmeyer, K. Mangus, T. M. Boeckers, and A. M. Grabrucker, Effects of Trace Metal Profiles Characteristic for Autism on Synapses in Cultured Neurons, Neural Plasticity, vol.12, issue.16, pp.1-17, 2015.
DOI : 10.5897/AJB12.2829

C. Verpelli, Importance of Shank3 Protein in Regulating Metabotropic Glutamate Receptor 5 (mGluR5) Expression and Signaling at Synapses, Journal of Biological Chemistry, vol.11, issue.40, pp.34839-34850, 2011.
DOI : 10.1016/j.neuropharm.2009.07.022

A. M. Nik and P. Carlsson, Separation of intact intestinal epithelium from mesenchyme, BioTechniques, vol.55, issue.1, pp.42-44, 2013.
DOI : 10.2144/000114055

URL : http://www.biotechniques.com/multimedia/archive/00219/BTN_A_000114055_O_219126a.pdf