J. Nunnari and A. Suomalainen, Mitochondria: In Sickness and in Health, Cell, vol.148, issue.6, pp.1145-1159, 2012.
DOI : 10.1016/j.cell.2012.02.035

URL : http://doi.org/10.1016/j.cell.2012.02.035

A. Kuznetsov, M. Hermann, V. Saks, P. Hengster, and R. Margreiter, The cell-type specificity of mitochondrial dynamics, The International Journal of Biochemistry & Cell Biology, vol.41, issue.10, pp.1928-1939, 2009.
DOI : 10.1016/j.biocel.2009.03.007

URL : https://hal.archives-ouvertes.fr/inserm-00422514

G. Twig, A. Elorza, A. Molina, H. Mohamed, J. Wikstrom et al., Fission and selective fusion govern mitochondrial segregation and elimination by autophagy, The EMBO Journal, vol.209, issue.2, pp.433-446, 2008.
DOI : 10.1038/sj.emboj.7601963

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2234339

D. Narendra, A. Tanaka, D. Suen, and R. Youle, Parkin-induced mitophagy in the pathogenesis of Parkinson disease, Autophagy, vol.5, issue.5, pp.706-708, 2009.
DOI : 10.4161/auto.5.5.8505

H. Wei, L. Liu, and Q. Chen, Selective removal of mitochondria via mitophagy: distinct pathways for different mitochondrial stresses, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1853, issue.10, pp.2784-2790, 2015.
DOI : 10.1016/j.bbamcr.2015.03.013

A. Anding and E. Baehrecke, Cleaning House: Selective Autophagy of Organelles, Developmental Cell, vol.41, issue.1, pp.10-22, 2017.
DOI : 10.1016/j.devcel.2017.02.016

L. Buhlman, M. Damiano, G. Bertolin, R. Ferrando-miguel, A. Lombes et al., Functional interplay between Parkin and Drp1 in mitochondrial fission and clearance, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1843, issue.9, pp.2012-2026, 2014.
DOI : 10.1016/j.bbamcr.2014.05.012

URL : http://doi.org/10.1016/j.bbamcr.2014.05.012

A. Rambold and J. Lippincott-schwartz, Mechanisms of mitochondria and autophagy crosstalk, Cell Cycle, vol.1, issue.23, pp.4032-4038, 2011.
DOI : 10.1038/ncb1482

Y. Kageyama, M. Hoshijima, K. Seo, D. Bedja, P. Sysa-shah et al., Parkin???independent mitophagy requires Drp1 and maintains the integrity of mammalian heart and brain, The EMBO Journal, vol.33, issue.23, pp.2798-2813, 2014.
DOI : 10.15252/embj.201488658

M. Song, K. Mihara, Y. Chen, L. Scorrano, and G. Dorn, Mitochondrial Fission and Fusion Factors Reciprocally Orchestrate Mitophagic Culling in Mouse Hearts and Cultured Fibroblasts, Cell Metabolism, vol.21, issue.2, pp.273-285, 2015.
DOI : 10.1016/j.cmet.2014.12.011

URL : http://doi.org/10.1016/j.cmet.2014.12.011

S. Yamashita, J. X. Furukawa, K. Hamasaki, M. Nezu, A. Otera et al., Mitochondrial division occurs concurrently with autophagosome formation but independently of Drp1 during mitophagy, The Journal of Cell Biology, vol.122, issue.5, pp.649-665, 2016.
DOI : 10.1002/1097-0029(20001215)51:6<496::AID-JEMT2>3.0.CO;2-9

A. Pickrell and R. Youle, The Roles of PINK1, Parkin, and Mitochondrial Fidelity in Parkinson???s Disease, Neuron, vol.85, issue.2, pp.257-273, 2015.
DOI : 10.1016/j.neuron.2014.12.007

S. Frank, B. Gaume, E. Bergmann-leitner, W. Leitner, E. Robert et al., The Role of Dynamin-Related Protein 1, a Mediator of Mitochondrial Fission, in Apoptosis, Developmental Cell, vol.1, issue.4, pp.515-525, 2001.
DOI : 10.1016/S1534-5807(01)00055-7

URL : https://hal.archives-ouvertes.fr/hal-00153696

P. Parone, D. James, D. Cruz, S. Mattenberger, Y. Donze et al., Inhibiting the Mitochondrial Fission Machinery Does Not Prevent Bax/Bak-Dependent Apoptosis, Molecular and Cellular Biology, vol.26, issue.20, pp.7397-7408, 2006.
DOI : 10.1128/MCB.02282-05

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1636857

J. Estaquier and D. Arnoult, Inhibiting Drp1-mediated mitochondrial fission selectively prevents the release of cytochrome c during apoptosis, Cell Death and Differentiation, vol.1763, issue.6, pp.1086-1094, 2007.
DOI : 10.1093/emboj/cdg423

R. Purkanti and M. Thattai, Ancient dynamin segments capture early stages of host???mitochondrial integration, Proceedings of the National Academy of Sciences, vol.39, issue.Web Server issue, pp.2800-2805, 2015.
DOI : 10.1093/molbev/msj030

URL : http://www.pnas.org/content/112/9/2800.full.pdf

M. Leger, M. Petru, V. Zarsky, L. Eme, C. Vlcek et al., An ancestral bacterial division system is widespread in eukaryotic mitochondria, Proceedings of the National Academy of Sciences, vol.280, issue.1769, pp.10239-10246, 2015.
DOI : 10.1016/S1360-1385(03)00193-6

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4547283

H. Shin, C. Shinotsuka, S. Torii, K. Murakami, and K. Nakayama, Identification and Subcellular Localization of a Novel Mammalian Dynamin-Related Protein Homologous to Yeast Vps1p and Dnm1p, Journal of Biochemistry, vol.122, issue.3, pp.525-530, 1997.
DOI : 10.1093/oxfordjournals.jbchem.a021784

M. Imoto, I. Tachibana, and R. Urrutia, Identification and functional characterization of a novel human protein highly related to the yeast dynamin-like GTPase Vps1p, J Cell Sci, vol.111, pp.1341-1349, 1998.

T. Kamimoto, Y. Nagai, H. Onogi, Y. Muro, T. Wakabayashi et al., Dymple, a Novel Dynamin-like High Molecular Weight GTPase Lacking a Proline-rich Carboxyl-terminal Domain in Mammalian Cells, Journal of Biological Chemistry, vol.105, issue.2, pp.1044-1051, 1998.
DOI : 10.1083/jcb.133.4.761

E. Smirnova, D. Shurland, S. Ryazantsev, and A. Van-der-bliek, A Human Dynamin-related Protein Controls the Distribution of Mitochondria, The Journal of Cell Biology, vol.8, issue.2, pp.351-358, 1998.
DOI : 10.1083/jcb.140.4.779

Y. Yoon, K. Pitts, S. Dahan, and M. Mcniven, A Novel Dynamin-like Protein Associates with Cytoplasmic Vesicles and Tubules of the Endoplasmic Reticulum in Mammalian Cells, The Journal of Cell Biology, vol.12, issue.4, pp.779-793, 1998.
DOI : 10.1083/jcb.119.4.773

Y. Yoon, K. Pitts, and M. Mcniven, Mammalian Dynamin-like Protein DLP1 Tubulates Membranes, Molecular Biology of the Cell, vol.12, issue.9, pp.2894-2905, 2001.
DOI : 10.1091/mbc.12.9.2894

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC59722/pdf

J. Mears, L. Lackner, S. Fang, E. Ingerman, J. Nunnari et al., Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission, Nature Structural & Molecular Biology, vol.88, issue.1, pp.20-26, 2011.
DOI : 10.1002/jcc.20084

C. Francy, F. Alvarez, L. Zhou, R. Ramachandran, and J. Mears, The Mechanoenzymatic Core of Dynamin-related Protein 1 Comprises the Minimal Machinery Required for Membrane Constriction, Journal of Biological Chemistry, vol.1788, issue.18, pp.11692-11703, 2015.
DOI : 10.1038/nmeth.2089

S. Howng, W. Sy, T. Cheng, A. Lieu, C. Wang et al., Genomic organization, alternative splicing, and promoter analysis of human dynamin-like protein gene, Biochemical and Biophysical Research Communications, vol.314, issue.3, pp.766-772, 2004.
DOI : 10.1016/j.bbrc.2003.12.172

T. Uo, J. Dworzak, C. Kinoshita, D. Inman, Y. Kinoshita et al., Drp1 levels constitutively regulate mitochondrial dynamics and cell survival in cortical neurons, Experimental Neurology, vol.218, issue.2, pp.274-285, 2009.
DOI : 10.1016/j.expneurol.2009.05.010

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2733949

P. Macdonald, C. Francy, N. Stepanyants, L. Lehman, A. Baglio et al., Distinct Splice Variants of Dynamin-related Protein 1 Differentially Utilize Mitochondrial Fission Factor as an Effector of Cooperative GTPase Activity, Journal of Biological Chemistry, vol.291, issue.1, pp.493-507, 2016.
DOI : 10.1074/jbc.M115.680025

S. Strack, T. Wilson, and J. Cribbs, Cyclin-dependent kinases regulate splice-specific targeting of dynamin-related protein 1 to microtubules, The Journal of Cell Biology, vol.201, issue.7, pp.1037-1051, 2013.
DOI : 10.1126/science.1219855

C. Frohlich, S. Grabiger, D. Schwefel, K. Faelber, E. Rosenbaum et al., Structural insights into oligomerization and mitochondrial remodelling of dynamin 1-like protein, The EMBO Journal, vol.12, issue.9, pp.1280-1292, 2013.
DOI : 10.1038/emboj.2011.198

E. Smirnova, L. Griparic, D. Shurland, and A. Van-der-bliek, Dynamin-related Protein Drp1 Is Required for Mitochondrial Division in Mammalian Cells, Molecular Biology of the Cell, vol.12, issue.8, pp.2245-2256, 2001.
DOI : 10.1091/mbc.12.8.2245

H. Li, K. Alavian, E. Lazrove, N. Mehta, A. Jones et al., A Bcl-xL???Drp1 complex regulates synaptic vesicle membrane dynamics during endocytosis, Nature Cell Biology, vol.218, issue.7, pp.773-785, 2013.
DOI : 10.1083/jcb.57.2.551

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3725990

M. Frohman, Role of mitochondrial lipids in guiding fission and fusion, Journal of Molecular Medicine, vol.302, issue.1, pp.263-269, 2015.
DOI : 10.1152/ajpheart.00833.2011

E. Kooijman, V. Chupin, B. De-kruijff, and K. Burger, Modulation of Membrane Curvature by Phosphatidic Acid and Lysophosphatidic Acid, Traffic, vol.125, issue.3, pp.162-174, 2003.
DOI : 10.1111/j.1365-2818.1982.tb00330.x

T. Tatsuta and T. Langer, Intramitochondrial phospholipid trafficking, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1862, issue.1, pp.81-89, 2017.
DOI : 10.1016/j.bbalip.2016.08.006

D. Ardail, F. Lerme, and P. Louisot, Further characterization of mitochondrial contact sites: Effect of short-chain alcohols on membrane fluidity and activity, Biochemical and Biophysical Research Communications, vol.173, issue.3, pp.878-885, 1990.
DOI : 10.1016/S0006-291X(05)80868-X

U. Schlattner, M. Tokarska-schlattner, D. Rousseau, M. Boissan, C. Mannella et al., Mitochondrial cardiolipin/phospholipid trafficking: The role of membrane contact site complexes and lipid transfer proteins, Chemistry and Physics of Lipids, vol.179, pp.32-41, 2014.
DOI : 10.1016/j.chemphyslip.2013.12.008

I. Bustillo-zabalbeitia, S. Montessuit, E. Raemy, G. Basanez, O. Terrones et al., Specific Interaction with Cardiolipin Triggers Functional Activation of Dynamin-Related Protein 1, PLoS ONE, vol.147, issue.7, p.102738, 2014.
DOI : 10.1371/journal.pone.0102738.g006

S. Montessuit, S. Somasekharan, O. Terrones, S. Lucken-ardjomande, S. Herzig et al., Membrane Remodeling Induced by the Dynamin-Related Protein Drp1 Stimulates Bax Oligomerization, Cell, vol.142, issue.6, pp.889-901, 2010.
DOI : 10.1016/j.cell.2010.08.017

URL : http://doi.org/10.1016/j.cell.2010.08.017

P. Macdonald, N. Stepanyants, N. Mehrotra, J. Mears, X. Qi et al., A dimeric equilibrium intermediate nucleates Drp1 reassembly on mitochondrial membranes for fission, Molecular Biology of the Cell, vol.173, issue.6, pp.1905-1915, 2014.
DOI : 10.1128/jb.173.6.2026-2034.1991

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4055269

N. Stepanyants, P. Macdonald, C. Francy, J. Mears, X. Qi et al., Cardiolipin's propensity for phase transition and its reorganization by dynamin-related protein 1 form a basis for mitochondrial membrane fission, Molecular Biology of the Cell, vol.4, issue.37, pp.3104-3116, 2015.
DOI : 10.1016/j.celrep.2013.08.024

Y. Adachi, K. Itoh, T. Yamada, K. Cerveny, T. Suzuki et al., Coincident Phosphatidic Acid Interaction Restrains Drp1 in Mitochondrial Division, Molecular Cell, vol.63, issue.6, pp.1034-1043, 2016.
DOI : 10.1016/j.molcel.2016.08.013

K. Pitts, Y. Yoon, E. Krueger, and M. Mcniven, The Dynamin-like Protein DLP1 Is Essential for Normal Distribution and Morphology of the Endoplasmic Reticulum and Mitochondria in Mammalian Cells, Molecular Biology of the Cell, vol.10, issue.12, pp.4403-4417, 1999.
DOI : 10.1091/mbc.10.12.4403

A. Labrousse, M. Zappaterra, D. Rube, and A. Van-der-bliek, C. elegans Dynamin-Related Protein DRP-1 Controls Severing of the Mitochondrial Outer Membrane, Molecular Cell, vol.4, issue.5, pp.815-826, 1999.
DOI : 10.1016/S1097-2765(00)80391-3

URL : https://hal.archives-ouvertes.fr/hal-00023436

A. Koch, M. Thiemann, M. Grabenbauer, Y. Yoon, M. Mcniven et al., Dynamin-like Protein 1 Is Involved in Peroxisomal Fission, Journal of Biological Chemistry, vol.269, issue.10, pp.8597-8605, 2003.
DOI : 10.1016/S0962-8924(99)01591-3

S. Horn, M. Thomenius, E. Johnson, C. Freel, J. Wu et al., Regulation of mitochondrial morphology by APC/CCdh1-mediated control of Drp1 stability, Molecular Biology of the Cell, vol.22, issue.8, pp.1207-1216, 2011.
DOI : 10.1091/mbc.E10-07-0567

J. Kashatus, A. Nascimento, L. Myers, A. Sher, F. Byrne et al., Erk2 Phosphorylation of Drp1 Promotes Mitochondrial Fission and MAPK-Driven Tumor Growth, Molecular Cell, vol.57, issue.3, pp.537-551, 2015.
DOI : 10.1016/j.molcel.2015.01.002

M. Serasinghe, S. Wieder, T. Renault, R. Elkholi, J. Asciolla et al., Mitochondrial Division Is Requisite to RAS-Induced Transformation and Targeted by Oncogenic MAPK Pathway Inhibitors, Molecular Cell, vol.57, issue.3, pp.521-536, 2015.
DOI : 10.1016/j.molcel.2015.01.003

URL : http://doi.org/10.1016/j.molcel.2015.01.003

B. Cho, H. Cho, H. Kim, J. Jeong, S. Park et al., CDK5-dependent inhibitory phosphorylation of Drp1 during neuronal maturation, Experimental & Molecular Medicine, vol.46, issue.7, p.105, 2014.
DOI : 10.1073/pnas.0808249105

A. Jahani-asl, E. Huang, I. Irrcher, J. Rashidian, N. Ishihara et al., CDK5 phosphorylates DRP1 and drives mitochondrial defects in NMDA-induced neuronal death, Human Molecular Genetics, vol.24, issue.16, pp.4573-4583, 2015.
DOI : 10.1093/hmg/ddv188

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4512627

C. Chang, C. Manlandro, D. Arnoult, J. Stadler, A. Posey et al., Mutation in the Middle Domain of the Dynamin-related GTPase Drp1 Impairs Higher Order Assembly and Mitochondrial Division, Journal of Biological Chemistry, vol.75, issue.42, pp.32494-32503, 2010.
DOI : 10.1016/j.ab.2006.05.025

J. Cribbs and S. Strack, Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death, EMBO reports, vol.23, issue.10, pp.939-944, 2007.
DOI : 10.1038/ng1341

L. Gomes, D. Benedetto, G. Scorrano, and L. , During autophagy mitochondria elongate, are spared from degradation and sustain cell viability, Nature Cell Biology, vol.17, issue.5, pp.589-598, 2011.
DOI : 10.1091/mbc.E06-05-0377

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3088644

G. Cereghetti, A. Stangherlin, O. Martins-de-brito, C. Chang, C. Blackstone et al., Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria, Proceedings of the National Academy of Sciences, vol.2, issue.5616, pp.15803-15808, 2008.
DOI : 10.1038/nprot.2006.478

O. Loson, Z. Song, H. Chen, and D. Chan, Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission, Molecular Biology of the Cell, vol.30, issue.14, pp.659-667, 2013.
DOI : 10.1038/emboj.2011.198

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3583668

H. Wang, P. Song, L. Du, W. Tian, W. Yue et al., Parkin Ubiquitinates Drp1 for Proteasome-dependent Degradation, Journal of Biological Chemistry, vol.1695, issue.13, pp.11649-11658, 2011.
DOI : 10.1038/ncb2012

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3064217

R. Yonashiro, S. Ishido, S. Kyo, T. Fukuda, E. Goto et al., A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics, The EMBO Journal, vol.12, issue.15, pp.3618-3626, 2006.
DOI : 10.1126/science.283.5407.1493

N. Nakamura, Y. Kimura, M. Tokuda, S. Honda, and S. Hirose, MARCH-V is a novel mitofusin 2- and Drp1-binding protein able to change mitochondrial morphology, EMBO reports, vol.12, issue.10, pp.1019-1022, 2006.
DOI : 10.1126/science.283.5407.1493

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1618377

M. Karbowski, A. Neutzner, and R. Youle, The mitochondrial E3 ubiquitin ligase MARCH5 is required for Drp1 dependent mitochondrial division, The Journal of Cell Biology, vol.114, issue.1, pp.71-84, 2007.
DOI : 10.1038/nrm1697

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2064424

Y. Park, S. Lee, M. Karbowski, A. Neutzner, R. Youle et al., Loss of MARCH5 mitochondrial E3 ubiquitin ligase induces cellular senescence through dynamin-related protein 1 and mitofusin 1, Journal of Cell Science, vol.123, issue.4, pp.619-626, 2010.
DOI : 10.1242/jcs.061481

A. Sugiura, S. Nagashima, T. Tokuyama, T. Amo, Y. Matsuki et al., MITOL Regulates Endoplasmic Reticulum-Mitochondria Contacts via Mitofusin2, Molecular Cell, vol.51, issue.1, pp.20-34, 2013.
DOI : 10.1016/j.molcel.2013.04.023

URL : http://doi.org/10.1016/j.molcel.2013.04.023

Y. Park, O. Nguyen, H. Kang, and H. Cho, MARCH5-mediated quality control on acetylated Mfn1 facilitates mitochondrial homeostasis and cell survival, Cell Death and Disease, vol.222, issue.4, p.1172, 2014.
DOI : 10.1007/s00018-013-1428-8

URL : http://doi.org/10.1038/cddis.2014.142

S. Xu, E. Cherok, S. Das, S. Li, B. Roelofs et al., Mitochondrial E3 ubiquitin ligase MARCH5 controls mitochondrial fission and cell sensitivity to stress-induced apoptosis through regulation of MiD49 protein, Molecular Biology of the Cell, vol.121, issue.7, pp.349-359, 2016.
DOI : 10.1016/j.cell.2005.06.009

E. Cherok, S. Xu, S. Li, S. Das, W. Meltzer et al., Novel regulatory roles of Mff and Drp1 in E3 ubiquitin ligase MARCH5???dependent degradation of MiD49 and Mcl1 and control of mitochondrial dynamics, Molecular Biology of the Cell, vol.21, issue.3, pp.396-410, 2016.
DOI : 10.1074/jbc.M901902200

R. Geiss-friedlander and F. Melchior, Concepts in sumoylation: a decade on, Nature Reviews Molecular Cell Biology, vol.1773, issue.12, pp.947-956, 2007.
DOI : 10.1016/j.cub.2004.02.004

Z. Harder, R. Zunino, and H. Mcbride, Sumo1 Conjugates Mitochondrial Substrates and Participates in Mitochondrial Fission, Current Biology, vol.14, issue.4, pp.340-345, 2004.
DOI : 10.1016/j.cub.2004.02.004

S. Wasiak, R. Zunino, and H. Mcbride, Bax/Bak promote sumoylation of DRP1 and its stable association with mitochondria during apoptotic cell death, The Journal of Cell Biology, vol.177, issue.3, pp.439-450, 2007.
DOI : 10.1074/jbc.M404105200

E. Braschi, R. Zunino, and H. Mcbride, MAPL is a new mitochondrial SUMO E3 ligase that regulates mitochondrial fission, EMBO reports, vol.10, issue.7, pp.748-754, 2009.
DOI : 10.1242/jcs.03418

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2727426

C. Figueroa-romero, J. Iniguez-lluhi, J. Stadler, C. Chang, D. Arnoult et al., SUMOylation of the mitochondrial fission protein Drp1 occurs at multiple nonconsensus sites within the B domain and is linked to its activity cycle, The FASEB Journal, vol.23, issue.11, pp.3917-3927, 2009.
DOI : 10.1096/fj.09-136630

R. Zunino, A. Schauss, P. Rippstein, M. Andrade-navarro, and H. Mcbride, The SUMO protease SENP5 is required to maintain mitochondrial morphology and function, Journal of Cell Science, vol.120, issue.7, pp.1178-1188, 2007.
DOI : 10.1242/jcs.03418

R. Zunino, E. Braschi, L. Xu, and H. Mcbride, Translocation of SenP5 from the Nucleoli to the Mitochondria Modulates DRP1-dependent Fission during Mitosis, Journal of Biological Chemistry, vol.12, issue.26, pp.17783-17795, 2009.
DOI : 10.1038/sj.embor.7401062

N. Gould, P. Doulias, M. Tenopoulou, K. Raju, and H. Ischiropoulos, -Nitrosylation, Journal of Biological Chemistry, vol.267, issue.37, pp.26473-26479, 2013.
DOI : 10.1074/mcp.R111.013037

URL : https://hal.archives-ouvertes.fr/inria-00621263

M. Barsoum, H. Yuan, A. Gerencser, G. Liot, Y. Kushnareva et al., Nitric oxide-induced mitochondrial fission is regulated by dynamin-related GTPases in neurons, The EMBO Journal, vol.12, issue.16, pp.3900-3911, 2006.
DOI : 10.1038/ng1341

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1553198

H. Yuan, A. Gerencser, G. Liot, S. Lipton, M. Ellisman et al., Mitochondrial fission is an upstream and required event for bax foci formation in response to nitric oxide in cortical neurons, Cell Death and Differentiation, vol.125, issue.3, pp.462-471, 2007.
DOI : 10.1054/ceca.2001.0238

B. Bossy, A. Petrilli, E. Klinglmayr, J. Chen, U. Lutz-meindl et al., S-Nitrosylation of DRP1 Does Not Affect Enzymatic Activity and is Not Specific to Alzheimer's Disease, Journal of Alzheimer's Disease, vol.20, issue.s2, pp.513-526, 2010.
DOI : 10.3233/JAD-2010-100552

T. Gawlowski, J. Suarez, B. Scott, M. Torres-gonzalez, H. Wang et al., -GlcNAc) in Cardiac Myocytes, Journal of Biological Chemistry, vol.279, issue.35, pp.30024-30034, 2012.
DOI : 10.1093/cvr/26.4.409

J. Sacoman, R. Dagda, A. Burnham-marusich, R. Dagda, and P. Berninsone, -GlcNAc Transferase (mOGT) Regulates Mitochondrial Structure, Function, and Survival in HeLa Cells, Journal of Biological Chemistry, vol.35, issue.11, pp.4499-4518, 2017.
DOI : 10.1016/j.tiv.2016.06.006

S. Marshall, V. Bacote, and R. Traxinger, Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance, J Biol Chem, vol.266, pp.4706-4712, 1991.

P. Fekkes, K. Shepard, and M. Yaffe, Gag3p, an Outer Membrane Protein Required for Fission of Mitochondrial Tubules, The Journal of Cell Biology, vol.11, issue.2, pp.333-340, 2000.
DOI : 10.1038/14101

A. Mozdy, J. Mccaffery, and J. Shaw, Dnm1p Gtpase-Mediated Mitochondrial Fission Is a Multi-Step Process Requiring the Novel Integral Membrane Component Fis1p, The Journal of Cell Biology, vol.28, issue.2, pp.367-380, 2000.
DOI : 10.1083/jcb.151.2.341

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2192649/pdf

Q. Tieu and J. Nunnari, Mdv1p Is a Wd Repeat Protein That Interacts with the Dynamin-Related Gtpase, Dnm1p, to Trigger Mitochondrial Division, The Journal of Cell Biology, vol.144, issue.2, pp.353-366, 2000.
DOI : 10.1083/jcb.151.2.341

E. Griffin, J. Graumann, and D. Chan, The WD40 protein Caf4p is a component of the mitochondrial fission machinery and recruits Dnm1p to mitochondria, The Journal of Cell Biology, vol.144, issue.2, pp.237-248, 2005.
DOI : 10.1002/pro.5560060606

Y. Yoon, E. Krueger, B. Oswald, and M. Mcniven, The Mitochondrial Protein hFis1 Regulates Mitochondrial Fission in Mammalian Cells through an Interaction with the Dynamin-Like Protein DLP1, Molecular and Cellular Biology, vol.23, issue.15, pp.5409-5420, 2003.
DOI : 10.1128/MCB.23.15.5409-5420.2003

D. James, P. Parone, Y. Mattenberger, and J. Martinou, hFis1, a Novel Component of the Mammalian Mitochondrial Fission Machinery, Journal of Biological Chemistry, vol.12, issue.38, pp.36373-36379, 2003.
DOI : 10.1038/79944

D. Stojanovski, O. Koutsopoulos, K. Okamoto, and M. Ryan, Levels of human Fis1 at the mitochondrial outer membrane regulate mitochondrial morphology, Journal of Cell Science, vol.117, issue.7, pp.1201-1210, 2004.
DOI : 10.1242/jcs.01058

H. Otera, C. Wang, M. Cleland, K. Setoguchi, S. Yokota et al., Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells, The Journal of Cell Biology, vol.115, issue.6, pp.1141-1158, 2010.
DOI : 10.1073/pnas.0706441104

C. Palmer, L. Osellame, D. Laine, O. Koutsopoulos, A. Frazier et al., MiD49 and MiD51, new components of the mitochondrial fission machinery, EMBO reports, vol.12, issue.6, pp.565-573, 2011.
DOI : 10.1128/MCB.23.15.5409-5420.2003

L. Osellame, A. Singh, D. Stroud, C. Palmer, D. Stojanovski et al., Cooperative and independent roles of the Drp1 adaptors Mff, MiD49 and MiD51 in mitochondrial fission, Journal of Cell Science, vol.129, issue.11, pp.2170-2181, 2016.
DOI : 10.1242/jcs.185165

R. Iwasawa, A. Mahul-mellier, C. Datler, E. Pazarentzos, and S. Grimm, Fis1 and Bap31 bridge the mitochondria-ER interface to establish a platform for apoptosis induction, The EMBO Journal, vol.279, issue.3, pp.556-568, 2011.
DOI : 10.1074/jbc.M402115200

Q. Shen, K. Yamano, B. Head, S. Kawajiri, J. Cheung et al., Mutations in Fis1 disrupt orderly disposal of defective mitochondria, Molecular Biology of the Cell, vol.25, issue.1, pp.145-159, 2014.
DOI : 10.1091/mbc.E13-09-0525

R. Rojansky, M. Cha, and D. Chan, Author response, eLife, vol.21, 2016.
DOI : 10.7554/eLife.17896.016

K. Yamano, A. Fogel, C. Wang, A. Van-der-bliek, and R. Youle, Author response, eLife, vol.23, p.1612, 2014.
DOI : 10.7554/eLife.01612.028

S. Gandre-babbe and A. Van-der-bliek, The Novel Tail-anchored Membrane Protein Mff Controls Mitochondrial and Peroxisomal Fission in Mammalian Cells, Molecular Biology of the Cell, vol.120, issue.7, pp.2402-2412, 2008.
DOI : 10.1242/jcs.03418

R. Clinton, C. Francy, R. Ramachandran, X. Qi, and J. Mears, Dynamin-related Protein 1 Oligomerization in Solution Impairs Functional Interactions with Membrane-anchored Mitochondrial Fission Factor, Journal of Biological Chemistry, vol.291, issue.1, pp.478-492, 2016.
DOI : 10.1074/jbc.M115.680181

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4697186

H. Otera, N. Miyata, O. Kuge, and K. Mihara, Drp1-dependent mitochondrial fission via MiD49/51 is essential for apoptotic cristae remodeling, The Journal of Cell Biology, vol.212, issue.5, pp.531-544, 2016.
DOI : 10.1038/emboj.2011.198

URL : http://jcb.rupress.org/content/jcb/212/5/531.full.pdf

J. Friedman, L. Lackner, M. West, J. Dibenedetto, J. Nunnari et al., ER Tubules Mark Sites of Mitochondrial Division, Science, vol.2, issue.84, pp.358-362, 2011.
DOI : 10.1126/scisignal.2000287

S. Strack and J. Cribbs, Allosteric Modulation of Drp1 Mechanoenzyme Assembly and Mitochondrial Fission by the Variable Domain, Journal of Biological Chemistry, vol.41, issue.14, pp.10990-11001, 2012.
DOI : 10.1038/nprot.2009.2

W. Ji, A. Hatch, R. Merrill, S. Strack, and H. Higgs, Author response, eLife, vol.10, p.11553, 2015.
DOI : 10.7554/eLife.11553.040

O. Loson, S. Meng, H. Ngo, R. Liu, J. Kaiser et al., Crystal structure and functional analysis of MiD49, a receptor for the mitochondrial fission protein Drp1, Protein Science, vol.35, issue.3, pp.386-394, 2015.
DOI : 10.1093/nar/gkm216

O. Loson, R. Liu, M. Rome, S. Meng, J. Kaiser et al., The Mitochondrial Fission Receptor MiD51 Requires ADP as a Cofactor, Structure, vol.22, issue.3, pp.367-377, 2014.
DOI : 10.1016/j.str.2014.01.001

V. Richter, A. Singh, M. Kvansakul, M. Ryan, and L. Osellame, Splitting up the powerhouse: structural insights into the mechanism of mitochondrial fission, Cellular and Molecular Life Sciences, vol.2, issue.41, pp.3695-3707, 2015.
DOI : 10.7554/eLife.00422

K. Elgass, E. Smith, M. Legros, C. Larabell, and M. Ryan, Analysis of ER-mitochondria contacts using correlative fluorescence microscopy and soft X-ray tomography of mammalian cells, Journal of Cell Science, vol.128, issue.15, pp.2795-2804, 2015.
DOI : 10.1242/jcs.169136

C. Palmer, K. Elgass, R. Parton, L. Osellame, D. Stojanovski et al., Adaptor Proteins MiD49 and MiD51 Can Act Independently of Mff and Fis1 in Drp1 Recruitment and Are Specific for Mitochondrial Fission, Journal of Biological Chemistry, vol.12, issue.38, pp.27584-27593, 2013.
DOI : 10.1126/science.1228360

O. Schmidt, N. Pfanner, and C. Meisinger, Mitochondrial protein import: from proteomics to functional mechanisms, Nature Reviews Molecular Cell Biology, vol.271, issue.9, pp.655-667, 2010.
DOI : 10.1074/mcp.M500298-MCP200

S. Liu, Y. Gao, C. Zhang, H. Li, S. Pan et al., SAMM50 Affects Mitochondrial Morphology through the Association of Drp1 in Mammalian Cells, FEBS Letters, vol.30, issue.9, pp.1313-1323, 2016.
DOI : 10.1038/emboj.2011.198

D. Copeland and A. Dalton, An Association between Mitochondria and the Endoplasmic Reticulum in Cells of the Pseudobranch Gland of a Teleost, The Journal of Cell Biology, vol.5, issue.3, pp.393-396, 1959.
DOI : 10.1083/jcb.5.3.393

O. De-brito and L. Scorrano, Mitofusin 2 tethers endoplasmic reticulum to mitochondria, Nature, vol.2, issue.7222, pp.605-610, 2008.
DOI : 10.1091/mbc.11.7.2445

G. Szabadkai, A. Simoni, K. Bianchi, D. Stefani, D. Leo et al., Mitochondrial dynamics and Ca2+ signaling, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1763, issue.5-6, pp.442-449, 2006.
DOI : 10.1016/j.bbamcr.2006.04.002

URL : http://doi.org/10.1016/j.bbamcr.2006.04.002

M. Bui, S. Gilady, R. Fitzsimmons, M. Benson, E. Lynes et al., Rab32 Modulates Apoptosis Onset and Mitochondria-associated Membrane (MAM) Properties, Journal of Biological Chemistry, vol.201, issue.41, pp.31590-31602, 2010.
DOI : 10.1158/0008-5472.CAN-05-0573

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2951233

C. Betz, D. Stracka, C. Prescianotto-baschong, M. Frieden, N. Demaurex et al., mTOR complex 2-Akt signaling at mitochondria-associated endoplasmic reticulum membranes (MAM) regulates mitochondrial physiology, Proceedings of the National Academy of Sciences, vol.32, issue.14, pp.12526-12534, 2013.
DOI : 10.1093/nar/gnh110

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3732980

T. Simmen, J. Aslan, A. Blagoveshchenskaya, L. Thomas, L. Wan et al., PACS-2 controls endoplasmic reticulum???mitochondria communication and Bid-mediated apoptosis, The EMBO Journal, vol.75, issue.4, pp.717-729, 2005.
DOI : 10.1016/S0092-8674(03)00802-X

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC556413

K. Arasaki, H. Shimizu, H. Mogari, N. Nishida, N. Hirota et al., A Role for the Ancient SNARE Syntaxin 17 in Regulating Mitochondrial Division, Developmental Cell, vol.32, issue.3, pp.304-317, 2015.
DOI : 10.1016/j.devcel.2014.12.011

R. Rizzuto, P. Pinton, W. Carrington, F. Fay, K. Fogarty et al., Close Contacts with the Endoplasmic Reticulum as Determinants of Mitochondrial Ca2+ Responses, Science, vol.280, issue.5370, pp.1763-1766, 1998.
DOI : 10.1126/science.280.5370.1763

A. Rowland, P. Chitwood, M. Phillips, and G. Voeltz, ER Contact Sites Define the Position and Timing of Endosome Fission, Cell, vol.159, issue.5, pp.1027-1041, 2014.
DOI : 10.1016/j.cell.2014.10.023

A. Roux, G. Koster, M. Lenz, B. Sorre, J. Manneville et al., Membrane curvature controls dynamin polymerization, Proceedings of the National Academy of Sciences, vol.75, issue.9, pp.4141-4146, 2010.
DOI : 10.1063/1.1785844

URL : https://hal.archives-ouvertes.fr/hal-00821343

P. Sawant, K. Eissenberger, L. Karier, T. Mascher, and M. Bramkamp, A dynamin-like protein involved in bacterial cell membrane surveillance under environmental stress, Environmental Microbiology, vol.6, issue.8, pp.2705-2720, 2016.
DOI : 10.1038/nrmicro1839

S. Koirala, Q. Guo, R. Kalia, H. Bui, D. Eckert et al., Interchangeable adaptors regulate mitochondrial dynamin assembly for membrane scission, Proceedings of the National Academy of Sciences, vol.404, issue.4, pp.1342-1351, 2013.
DOI : 10.1016/S0076-6879(05)04043-7

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3625255

J. Spelbrink, F. Li, V. Tiranti, K. Nikali, Q. Yuan et al., Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria, Nature Genetics, vol.28, issue.3, pp.223-231, 2001.
DOI : 10.1038/90058

D. Margineantu, G. Cox, W. Sundell, L. Sherwood, S. Beechem et al., Cell cycle dependent morphology changes and associated mitochondrial DNA redistribution in mitochondria of human cell lines, Mitochondrion, vol.1, issue.5, pp.425-435, 2002.
DOI : 10.1016/S1567-7249(02)00006-5

N. Garrido, L. Griparic, E. Jokitalo, J. Wartiovaara, A. Van-der-bliek et al., Composition and Dynamics of Human Mitochondrial Nucleoids, Molecular Biology of the Cell, vol.14, issue.4, pp.1583-1596, 2003.
DOI : 10.1091/mbc.E02-07-0399

R. Ban-ishihara, T. Ishihara, N. Sasaki, K. Mihara, and N. Ishihara, Dynamics of nucleoid structure regulated by mitochondrial fission contributes to cristae reformation and release of cytochrome c, Proceedings of the National Academy of Sciences, vol.24, issue.8, pp.11863-11868, 2013.
DOI : 10.1038/sj.emboj.7600592

P. Parone, D. Cruz, S. Tondera, D. Mattenberger, Y. James et al., Preventing Mitochondrial Fission Impairs Mitochondrial Function and Leads to Loss of Mitochondrial DNA, PLoS ONE, vol.411, issue.257, p.3257, 2008.
DOI : 10.1371/journal.pone.0003257.s001

T. Ishihara, R. Ban-ishihara, M. Maeda, Y. Matsunaga, A. Ichimura et al., Dynamics of Mitochondrial DNA Nucleoids Regulated by Mitochondrial Fission Is Essential for Maintenance of Homogeneously Active Mitochondria during Neonatal Heart Development, Molecular and Cellular Biology, vol.35, issue.1, pp.211-223, 2015.
DOI : 10.1128/MCB.01054-14

S. Lewis, L. Uchiyama, and J. Nunnari, ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells, Science, vol.353, issue.6296, p.5549, 2016.
DOI : 10.1111/j.1742-4658.2007.06167.x

Y. Mattenberger, D. James, and J. Martinou, Fusion of mitochondria in mammalian cells is dependent on the mitochondrial inner membrane potential and independent of microtubules or actin, FEBS Letters, vol.26, issue.1-3, pp.53-59, 2003.
DOI : 10.1016/S0968-0004(00)01735-7

D. Vos, K. Allan, V. Grierson, A. Sheetz, and M. , Mitochondrial Function and Actin Regulate Dynamin-Related Protein 1-Dependent Mitochondrial Fission, Current Biology, vol.15, issue.7, pp.678-683, 2005.
DOI : 10.1016/j.cub.2005.02.064

B. Duboff, J. Gotz, and M. Feany, Tau Promotes Neurodegeneration via DRP1 Mislocalization In??Vivo, Neuron, vol.75, issue.4, pp.618-632, 2012.
DOI : 10.1016/j.neuron.2012.06.026

A. Hatch, W. Ji, R. Merrill, S. Strack, and H. Higgs, Actin filaments as dynamic reservoirs for Drp1 recruitment, Molecular Biology of the Cell, vol.296, issue.5569, pp.3109-3121, 2016.
DOI : 10.1126/science.1068539

URL : http://www.molbiolcell.org/content/27/20/3109.full.pdf

F. Korobova, V. Ramabhadran, and H. Higgs, An Actin-Dependent Step in Mitochondrial Fission Mediated by the ER-Associated Formin INF2, Science, vol.75, issue.4, pp.464-467, 2013.
DOI : 10.1016/j.neuron.2012.06.026

C. Skau and C. Waterman, Specification of Architecture and Function of Actin Structures by Actin Nucleation Factors, Annual Review of Biophysics, vol.44, issue.1, pp.285-310, 2015.
DOI : 10.1146/annurev-biophys-060414-034308

O. Boyer, F. Nevo, E. Plaisier, B. Funalot, O. Gribouval et al., Mutations in Charcot???Marie???Tooth Disease with Glomerulopathy, New England Journal of Medicine, vol.365, issue.25, pp.2377-2388, 2011.
DOI : 10.1056/NEJMoa1109122

URL : https://hal.archives-ouvertes.fr/inserm-00919173

E. Chhabra, V. Ramabhadran, S. Gerber, and H. Higgs, INF2 is an endoplasmic reticulum-associated formin protein, Journal of Cell Science, vol.122, issue.9, pp.1430-1440, 2009.
DOI : 10.1242/jcs.040691

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2721004

T. Otomo, D. Tomchick, C. Otomo, S. Panchal, M. Machius et al., Structural basis of actin filament nucleation and processive capping by a formin homology 2 domain, Nature, vol.119, issue.7025, pp.488-494, 2005.
DOI : 10.1038/35050590

F. Korobova, T. Gauvin, and H. Higgs, A Role for Myosin II in Mammalian Mitochondrial Fission, Current Biology, vol.24, issue.4, pp.409-414, 2014.
DOI : 10.1016/j.cub.2013.12.032

T. Kuroiwa, K. Nishida, Y. Yoshida, T. Fujiwara, T. Mori et al., Structure, function and evolution of the mitochondrial division apparatus, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1763, issue.5-6, pp.510-521, 2006.
DOI : 10.1016/j.bbamcr.2006.03.007

S. Yumura, cells, The Journal of Cell Biology, vol.8, issue.1, pp.137-146, 2001.
DOI : 10.1073/pnas.95.23.13652

N. Araki, T. Hatae, A. Furukawa, and J. Swanson, Phosphoinositide-3-kinase-independent contractile activities associated with Fcgamma-receptor-mediated phagocytosis and macropinocytosis in macrophages, Journal of Cell Science, vol.116, issue.2, pp.247-257, 2003.
DOI : 10.1242/jcs.00235

S. Miserey-lenkei, G. Chalancon, S. Bardin, E. Formstecher, B. Goud et al., Rab and actomyosin-dependent fission of transport vesicles at the Golgi complex, Nature Cell Biology, vol.15, issue.18, pp.645-654, 2010.
DOI : 10.1091/mbc.7.6.961

S. Li, S. Xu, B. Roelofs, L. Boyman, W. Lederer et al., Transient assembly of F-actin on the outer mitochondrial membrane contributes to mitochondrial fission, The Journal of Cell Biology, vol.113, issue.1, pp.109-123, 2015.
DOI : 10.1074/jbc.M901902200

M. Welch, A. Iwamatsu, and T. Mitchison, Actin polymerization is induced by Arp 2/3 protein complex at the surface of Listeria monocytogenes, Nature, vol.385, issue.6613, pp.265-269, 1997.
DOI : 10.1038/385265a0

J. Pizarro-cerda, A. Charbit, J. Enninga, F. Lafont, and P. Cossart, Manipulation of host membranes by the bacterial pathogens Listeria, Francisella, Shigella and Yersinia, Seminars in Cell & Developmental Biology, vol.60, pp.155-167, 2016.
DOI : 10.1016/j.semcdb.2016.07.019

A. Moore, Y. Wong, C. Simpson, and E. Holzbaur, Dynamic actin cycling through mitochondrial subpopulations locally regulates the fission???fusion balance within mitochondrial networks, Nature Communications, vol.585, p.12886, 2016.
DOI : 10.1007/978-1-60761-380-0_10

URL : http://doi.org/10.1038/ncomms12886

V. Ramabhadran, F. Korobova, G. Rahme, and H. Higgs, Splice variant-specific cellular function of the formin INF2 in maintenance of Golgi architecture, Molecular Biology of the Cell, vol.22, issue.24, pp.4822-4833, 2011.
DOI : 10.1091/mbc.E11-05-0457

F. Stavru, F. Bouillaud, A. Sartori, D. Ricquier, and P. Cossart, Listeria monocytogenes transiently alters mitochondrial dynamics during infection, Proceedings of the National Academy of Sciences, vol.580, issue.9, pp.3612-3617, 2011.
DOI : 10.1016/j.febslet.2006.03.057

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3048117

A. Grassart, A. Cheng, S. Hong, F. Zhang, N. Zenzer et al., Actin and dynamin2 dynamics and interplay during clathrin-mediated endocytosis, The Journal of Cell Biology, vol.205, issue.5, pp.721-735, 2014.
DOI : 10.1091/mbc.E04-09-0774

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4050722

A. Gautreau, K. Oguievetskaia, and C. Ungermann, Function and Regulation of the Endosomal Fusion and Fission Machineries, Cold Spring Harbor Perspectives in Biology, vol.6, issue.3, 2014.
DOI : 10.1101/cshperspect.a016832

C. Kocks, E. Gouin, M. Tabouret, P. Berche, H. Ohayon et al., L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein, Cell, vol.68, issue.3, pp.521-531, 1992.
DOI : 10.1016/0092-8674(92)90188-I

F. Alonzo, P. Mcmullen, and N. Freitag, Actin Polymerization Drives Septation of Listeria monocytogenes namA Hydrolase Mutants, Demonstrating Host Correction of a Bacterial Defect, Infection and Immunity, vol.79, issue.4, pp.1458-1470, 2011.
DOI : 10.1128/IAI.01140-10

M. Siegrist, A. Aditham, A. Espaillat, T. Cameron, S. Whiteside et al., Host Actin Polymerization Tunes the Cell Division Cycle of an Intracellular Pathogen, Cell Reports, vol.11, issue.4, pp.499-507, 2015.
DOI : 10.1016/j.celrep.2015.03.046

K. Fung, L. Dai, and W. Trimble, Cell and Molecular Biology of Septins, Int Rev Cell Mol Biol, vol.310, pp.289-339, 2014.
DOI : 10.1016/B978-0-12-800180-6.00007-4

S. Mostowy and P. Cossart, Septins: the fourth component of the cytoskeleton, Nature Reviews Molecular Cell Biology, vol.22, pp.183-194, 2012.
DOI : 10.1016/j.cub.2011.11.034

A. Pagliuso, T. Tham, J. Stevens, T. Lagache, R. Persson et al., A role for septin 2 in Drp1???mediated mitochondrial fission, EMBO reports, vol.17, issue.6, pp.858-873, 2016.
DOI : 10.15252/embr.201541612

A. Hatch, P. Gurel, and H. Higgs, Novel roles for actin in mitochondrial fission, Journal of Cell Science, vol.127, issue.21, pp.4549-4560, 2014.
DOI : 10.1242/jcs.153791

E. Joo, M. Surka, and W. Trimble, Mammalian SEPT2 Is Required for Scaffolding Nonmuscle Myosin II and Its Kinases, Developmental Cell, vol.13, issue.5, pp.677-690, 2007.
DOI : 10.1016/j.devcel.2007.09.001

URL : http://doi.org/10.1016/j.devcel.2007.09.001

S. Sweitzer and J. Hinshaw, Dynamin Undergoes a GTP-Dependent Conformational Change Causing Vesiculation, Cell, vol.93, issue.6, pp.1021-1029, 1998.
DOI : 10.1016/S0092-8674(00)81207-6

URL : http://doi.org/10.1016/s0092-8674(00)81207-6

J. Lee, L. Westrate, H. Wu, C. Page, and G. Voeltz, Multiple dynamin family members collaborate to drive mitochondrial division, Nature, vol.152, issue.7631, pp.139-143, 2016.
DOI : 10.1016/j.jsb.2005.07.007

A. Gal, G. Inczedy-farkas, E. Pal, V. Remenyi, B. Bereznai et al., The coexistence of dynamin 2 mutation and multiple mitochondrial DNA (mtDNA) deletions in the background of severe cardiomyopathy and centronuclear myopathy, Clinical Neuropathology, vol.34, issue.03, pp.89-95, 2015.
DOI : 10.5414/NP300789

A. Van-der-bliek, T. Redelmeier, H. Damke, E. Tisdale, E. Meyerowitz et al., Mutations in human dynamin block an intermediate stage in coated vesicle formation, The Journal of Cell Biology, vol.122, issue.3, pp.553-563, 1993.
DOI : 10.1083/jcb.122.3.553

R. Gormal, T. Nguyen, S. Martin, A. Papadopulos, and F. Meunier, An Acto-Myosin II Constricting Ring Initiates the Fission of Activity-Dependent Bulk Endosomes in Neurosecretory Cells, Journal of Neuroscience, vol.35, issue.4, pp.1380-1389, 2015.
DOI : 10.1523/JNEUROSCI.3228-14.2015

K. Nishida, M. Takahara, S. Miyagishima, H. Kuroiwa, M. Matsuzaki et al., Dynamic recruitment of dynamin for final mitochondrial severance in a primitive red alga, Proceedings of the National Academy of Sciences, vol.151, issue.2, pp.2146-2151, 2003.
DOI : 10.1083/jcb.151.2.F1

A. Chanez, A. Hehl, M. Engstler, and A. Schneider, Ablation of the single dynamin of T. brucei blocks mitochondrial fission and endocytosis and leads to a precise cytokinesis arrest, Journal of Cell Science, vol.119, issue.14, pp.2968-2974, 2006.
DOI : 10.1242/jcs.03023

J. Mattila, A. Shnyrova, A. Sundborger, E. Hortelano, M. Fuhrmans et al., A hemi-fission intermediate links two mechanistically distinct stages of membrane fission, Nature, vol.272, issue.7563, pp.109-113, 2015.
DOI : 10.1074/jbc.272.44.28030

T. Cahill, V. Leo, M. Kelly, A. Stockenhuber, N. Kennedy et al., Resistance of Dynamin-related Protein 1 Oligomers to Disassembly Impairs Mitophagy, Resulting in Myocardial Inflammation and Heart Failure, Journal of Biological Chemistry, vol.1840, issue.43, pp.25907-25919, 2015.
DOI : 10.1161/JAHA.113.000461

F. Stavru, A. Palmer, C. Wang, R. Youle, and P. Cossart, Atypical mitochondrial fission upon bacterial infection, Proceedings of the National Academy of Sciences, vol.173, issue.4, pp.16003-16008, 2013.
DOI : 10.1083/jcb.200601002

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3791707

V. Soubannier, G. Mclelland, R. Zunino, E. Braschi, P. Rippstein et al., A Vesicular Transport Pathway Shuttles Cargo from Mitochondria to Lysosomes, Current Biology, vol.22, issue.2, pp.135-141, 2012.
DOI : 10.1016/j.cub.2011.11.057

URL : http://doi.org/10.1016/j.cub.2011.11.057

G. Mclelland, V. Soubannier, C. Chen, H. Mcbride, and E. Fon, Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control, The EMBO Journal, vol.107, issue.Pt 2, pp.282-295, 2014.
DOI : 10.1073/pnas.0913485107

G. Twig, S. Graf, J. Wikstrom, H. Mohamed, S. Haigh et al., Tagging and tracking individual networks within a complex mitochondrial web with photoactivatable GFP, AJP: Cell Physiology, vol.291, issue.1, pp.176-184, 2006.
DOI : 10.1152/ajpcell.00348.2005

T. Rival, M. Macchi, L. Arnaune-pelloquin, M. Poidevin, F. Maillet et al., Inner-membrane proteins PMI/TMEM11 regulate mitochondrial morphogenesis independently of the DRP1/MFN fission/fusion pathways, EMBO reports, vol.12, issue.3, pp.223-230, 2011.
DOI : 10.1242/jcs.038513

J. Zhao, T. Liu, S. Jin, N. Tomilin, J. Castro et al., The novel conserved mitochondrial inner-membrane protein MTGM regulates mitochondrial morphology and cell proliferation, Journal of Cell Science, vol.122, issue.13, pp.2252-2262, 2009.
DOI : 10.1242/jcs.038513

D. Tondera, F. Czauderna, K. Paulick, R. Schwarzer, J. Kaufmann et al., The mitochondrial protein MTP18 contributes to mitochondrial fission in mammalian cells, Journal of Cell Science, vol.118, issue.14, pp.3049-3059, 2005.
DOI : 10.1242/jcs.02415

R. Anand, T. Wai, M. Baker, N. Kladt, A. Schauss et al., -AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission, The Journal of Cell Biology, vol.204, issue.6, pp.919-929, 2014.
DOI : 10.1242/jcs.03418

URL : https://hal.archives-ouvertes.fr/hal-00709104

C. Lo, S. Chen, S. Creed, M. Kang, N. Zhao et al., Novel super-resolution capable mitochondrial probe, MitoRed AIE, enables assessment of real-time molecular mitochondrial dynamics, Scientific Reports, vol.5, issue.1, p.30855, 2016.
DOI : 10.1038/nprot.2010.122

X. Han, Y. Lu, S. Li, T. Kaitsuka, Y. Sato et al., CaM kinase I?????induced phosphorylation of Drp1 regulates mitochondrial morphology, The Journal of Cell Biology, vol.23, issue.3, pp.573-585, 2008.
DOI : 10.1242/jcs.02537

E. Bordt, P. Clerc, B. Roelofs, A. Saladino, L. Tretter et al., The Putative Drp1 Inhibitor mdivi-1 Is a Reversible Mitochondrial Complex I Inhibitor that Modulates Reactive Oxygen Species, Developmental Cell, vol.40, issue.6, pp.583-594, 2017.
DOI : 10.1016/j.devcel.2017.02.020

D. Tondera, S. Grandemange, A. Jourdain, M. Karbowski, Y. Mattenberger et al., SLP-2 is required for stress-induced mitochondrial hyperfusion, The EMBO Journal, vol.12, issue.11, pp.1589-1600, 2009.
DOI : 10.1038/ng1341

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2693158