E. Murray, R. A. Swann, and M. B. , A disease of rabbits characterised by a large mononuclear leucocytosis, caused by a hitherto undescribed bacillusBacterium monocytogenes (n.sp.), The Journal of Pathology and Bacteriology, vol.xxxi, issue.4, pp.407-439, 1926.
DOI : 10.1001/archinte.1919.00090260050004

C. Burn, Characteristics of a new species of the genus Listerella obtained from human sources, J. Bacteriol, vol.30, pp.573-591, 1935.

M. Gray and A. Killinger, Listeria monocytogenes and listeric infections, Bacteriol Rev, vol.30, issue.2, pp.309-382, 1966.

R. Lamont, J. Sobel, and S. Mazaki-tovi, Listeriosis in human pregnancy: a systematic review, Journal of Perinatal Medicine, vol.129, issue.3, pp.227-236, 2011.
DOI : 10.1007/BF00145800

C. Gahan and C. Hill, infection, Journal of Applied Microbiology, vol.180, issue.6, pp.1345-1353, 2005.
DOI : 10.1007/s00018-003-2225-6

URL : https://hal.archives-ouvertes.fr/hal-00453824

P. Cossart, Illuminating the landscape of host-pathogen interactions with the bacterium Listeria monocytogenes, Proceedings of the National Academy of Sciences, vol.22, issue.3, pp.19484-19491, 2011.
DOI : 10.1016/j.smim.2010.02.002

T. Chakraborty, M. Leimeister-wachter, and E. Domann, Coordinate regulation of virulence genes in Listeria monocytogenes requires the product of the prfA gene., Journal of Bacteriology, vol.174, issue.2, pp.568-574, 1992.
DOI : 10.1128/jb.174.2.568-574.1992

N. Freitag, G. Port, and M. Miner, Listeria monocytogenes ??? from saprophyte to intracellular pathogen, Nature Reviews Microbiology, vol.109, issue.9, pp.623-628, 2009.
DOI : 10.1099/00221287-138-12-2619

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2813567

M. Eiting, G. Hageluken, W. Schubert, and D. Heinz, The mutation G145S in PrfA, a key virulence regulator of Listeria monocytogenes, increases DNA-binding affinity by stabilizing the HTH motif, Molecular Microbiology, vol.12, issue.2, pp.433-446, 2005.
DOI : 10.1016/0263-7855(90)80070-V

B. Xayarath, K. Volz, J. Smart, and N. Freitag, Probing the Role of Protein Surface Charge in the Activation of PrfA, the Central Regulator of Listeria monocytogenes Pathogenesis, PLoS ONE, vol.67, issue.8, p.23502, 2011.
DOI : 10.1371/journal.pone.0023502.s003

M. Reniere, A. Whiteley, and K. Hamilton, Glutathione activates virulence gene expression of an intracellular pathogen, Nature, vol.5, issue.7533, pp.170-173, 2015.
DOI : 10.1046/j.1462-5822.2003.00327.x

J. Wong, Y. Chen, and Y. Gan, Host Cytosolic Glutathione Sensing by a Membrane Histidine Kinase Activates the Type VI Secretion System in an Intracellular Bacterium, Cell Host & Microbe, vol.18, issue.1, pp.38-48, 2015.
DOI : 10.1016/j.chom.2015.06.002

I. Caldelari, Y. Chao, P. Romby, and J. Vogel, RNA-Mediated Regulation in Pathogenic Bacteria, Cold Spring Harbor Perspectives in Medicine, vol.3, issue.9, p.10298, 2013.
DOI : 10.1101/cshperspect.a010298

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3753719

J. Gripenland, S. Netterling, E. Loh, T. Tiensuu, A. Toledo-arana et al., RNAs: regulators of bacterial virulence, Nature Reviews Microbiology, vol.4, issue.12, pp.857-866, 2010.
DOI : 10.1128/jb.178.3.683-690.1996

G. Storz, J. Vogel, and K. Wassarman, Regulation by Small RNAs in Bacteria: Expanding Frontiers, Molecular Cell, vol.43, issue.6, pp.880-891, 2011.
DOI : 10.1016/j.molcel.2011.08.022

URL : http://doi.org/10.1016/j.molcel.2011.08.022

J. Christiansen, J. Nielsen, T. Ebersbach, P. Valentin-hansen, L. Sogaard-andersen et al., Identification of small Hfq-binding RNAs in Listeria monocytogenes, RNA, vol.12, issue.7, pp.1383-1396, 2006.
DOI : 10.1261/rna.49706

P. Mandin, F. Repoila, M. Vergassola, T. Geissmann, and P. Cossart, Identification of new noncoding RNAs in Listeria monocytogenes and prediction of mRNA targets, Nucleic Acids Research, vol.35, issue.3, pp.962-974, 2007.
DOI : 10.1093/nar/gkl1096

URL : https://hal.archives-ouvertes.fr/hal-00129258

S. Behrens, S. Widder, and G. Mannala, Ultra Deep Sequencing of Listeria monocytogenes sRNA Transcriptome Revealed New Antisense RNAs, PLoS ONE, vol.16, issue.2, p.83979, 2014.
DOI : 10.1371/journal.pone.0083979.s007

URL : http://doi.org/10.1371/journal.pone.0083979

D. Dar, M. Shamir, and J. Mellin, Term-seq reveals abundant ribo-regulation of antibiotics resistance in bacteria, Science, vol.36, issue.suppl_2, p.9822, 2016.
DOI : 10.1093/nar/gkn180

M. Mraheil, A. Billion, and M. W. , The intracellular sRNA transcriptome of Listeria monocytogenes during growth in macrophages, Nucleic Acids Research, vol.39, issue.10, pp.4235-4248, 2011.
DOI : 10.1093/nar/gkr033

H. Oliver, R. Orsi, and L. Ponnala, Deep RNA sequencing of L. monocytogenes reveals overlapping and extensive stationary phase and sigma B-dependent transcriptomes, including multiple highly transcribed noncoding RNAs, BMC Genomics, vol.10, issue.1, p.641, 2009.
DOI : 10.1186/1471-2164-10-641

A. Toledo-arana, O. Dussurget, and G. Nikitas, The Listeria transcriptional landscape from saprophytism to virulence, Nature, vol.99, issue.7249, pp.950-956, 2009.
DOI : 10.1016/S1438-4221(00)80086-7

O. Wurtzel, N. Sesto, and J. Mellin, Comparative transcriptomics of pathogenic and nonpathogenic Listeria species, Mol Syst Biol, vol.8, p.583, 2012.

N. Sesto, M. Koutero, P. Cossart, C. Bouchier, and P. Lechat, infection, Future Microbiology, vol.9, issue.9, pp.1025-1037, 2014.
DOI : 10.2217/fmb.14.79

URL : https://hal.archives-ouvertes.fr/pasteur-01161885

A. Lebreton and P. Cossart, virulence gene expression, RNA Biology, vol.180, issue.5, pp.1-11, 2016.
DOI : 10.1016/j.febslet.2014.05.051

URL : https://hal.archives-ouvertes.fr/hal-01350979

M. Leimeister-wachter, E. Domann, and T. Chakraborty, The expression of virulence genes in Listeria monocytogenes is thermoregulated., Journal of Bacteriology, vol.174, issue.3, pp.947-952, 1992.
DOI : 10.1128/jb.174.3.947-952.1992

A. Renzoni, A. Klarsfeld, S. Dramsi, and P. Cossart, Evidence that PrfA, the pleiotropic activator of virulence genes in Listeria monocytogenes, can be present but inactive, Infect Immun, vol.65, issue.4, pp.1515-1518, 1997.

J. Johansson, P. Mandin, A. Renzoni, C. Chiaruttini, M. Springer et al., An RNA Thermosensor Controls Expression of Virulence Genes in Listeria monocytogenes, Cell, vol.110, issue.5, pp.551-561, 2002.
DOI : 10.1016/S0092-8674(02)00905-4

A. Giuliodori, D. Pietro, F. Marzi, and S. , The cspA mRNA Is a Thermosensor that Modulates Translation of the Cold-Shock Protein CspA, Molecular Cell, vol.37, issue.1, pp.21-33, 2010.
DOI : 10.1016/j.molcel.2009.11.033

URL : https://hal.archives-ouvertes.fr/hal-00475727

J. Johansson, RNA Thermosensors in Bacterial Pathogens, Contrib Microbiol, vol.16, pp.150-160, 2009.
DOI : 10.1159/000219378

K. Bohme, R. Steinmann, and J. Kortmann, Concerted Actions of a Thermo-labile Regulator and a Unique Intergenic RNA Thermosensor Control Yersinia Virulence, PLoS Pathogens, vol.6, issue.2, p.1002518, 2012.
DOI : 10.1371/journal.ppat.1002518.s009

A. Serganov and E. Nudler, A Decade of Riboswitches, Cell, vol.152, issue.1-2, pp.17-24, 2013.
DOI : 10.1016/j.cell.2012.12.024

E. Loh, O. Dussurget, and J. Gripenland, A trans-Acting Riboswitch Controls Expression of the Virulence Regulator PrfA in Listeria monocytogenes, Cell, vol.139, issue.4, pp.770-779, 2009.
DOI : 10.1016/j.cell.2009.08.046

J. Mellin, T. Tiensuu, C. Becavin, E. Gouin, J. Johansson et al., A riboswitch-regulated antisense RNA in Listeria monocytogenes, Proceedings of the National Academy of Sciences, vol.109, issue.41, pp.13132-13137, 2013.
DOI : 10.1073/pnas.1212809109

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3740843

J. Mellin, M. Koutero, D. Dar, M. Nahori, R. Sorek et al., Sequestration of a two-component response regulator by a riboswitch-regulated noncoding RNA, Science, vol.3, issue.12, pp.940-943, 2014.
DOI : 10.1101/cshperspect.a003798

URL : https://hal.archives-ouvertes.fr/pasteur-01120664

S. Debroy, M. Gebbie, and R. A. , A riboswitch-containing sRNA controls gene expression by sequestration of a response regulator, Science, vol.75, issue.7, pp.937-940, 2014.
DOI : 10.1073/pnas.75.7.3479

P. Horvath, R. Barrangou, . Crispr, and . Cas, CRISPR/Cas, the Immune System of Bacteria and Archaea, Science, vol.10, issue.1, pp.167-170, 2010.
DOI : 10.1099/mic.0.023960-0

N. Sesto, M. Touchon, and J. Andrade, A PNPase Dependent CRISPR System in Listeria, PLoS Genetics, vol.8, issue.1, p.1004065, 2014.
DOI : 10.1371/journal.pgen.1004065.s013

URL : https://hal.archives-ouvertes.fr/pasteur-01145428

T. Rajabian, B. Gavicherla, and M. Heisig, The bacterial virulence factor InlC perturbs apical cell junctions and promotes cell-to-cell spread of Listeria, Nature Cell Biology, vol.279, issue.10, pp.1212-1218, 2009.
DOI : 10.1046/j.1365-2958.2003.03639.x

G. Dabiri, J. Sanger, D. Portnoy, and F. Southwick, Listeria monocytogenes moves rapidly through the host-cell cytoplasm by inducing directional actin assembly., Proceedings of the National Academy of Sciences, vol.87, issue.16, pp.6068-6072, 1990.
DOI : 10.1073/pnas.87.16.6068

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC54473/pdf

L. Tilney and D. Portnoy, Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes, The Journal of Cell Biology, vol.109, issue.4, pp.1597-1608, 1989.
DOI : 10.1083/jcb.109.4.1597

E. Domann, J. Wehland, and M. Rohde, A novel bacterial virulence gene in Listeria monocytogenes required for host cell microfilament interaction with homology to the proline-rich region of vinculin, EMBO J, vol.11, issue.5, pp.1981-1990, 1992.

C. Kocks, E. Gouin, M. Tabouret, P. Berche, H. Ohayon et al., L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein, Cell, vol.68, issue.3, pp.521-531, 1992.
DOI : 10.1016/0092-8674(92)90188-I

M. Welch, A. Iwamatsu, and T. Mitchison, Actin polymerization is induced by Arp 2/3 protein complex at the surface of Listeria monocytogenes, Nature, vol.385, issue.6613, pp.265-269, 1997.
DOI : 10.1038/385265a0

J. Abella, C. Galloni, and J. Pernier, Isoform diversity in the Arp2/3 complex determines actin filament dynamics, Nature Cell Biology, vol.55, issue.1, pp.76-86, 2016.
DOI : 10.1016/j.jsb.2005.06.002

URL : https://hal.archives-ouvertes.fr/hal-01461985

D. Chorev, O. Moscovitz, B. Geiger, and M. Sharon, Regulation of focal adhesion formation by a vinculin-Arp2/3 hybrid complex, Nature Communications, vol.40, p.3758, 2014.
DOI : 10.1021/ac035406j

A. Kuhbacher, M. Emmenlauer, and P. Ramo, Genome-Wide siRNA Screen Identifies Complementary Signaling Pathways Involved in Listeria Infection and Reveals Different Actin Nucleation Mechanisms during Listeria Cell Invasion and Actin Comet Tail Formation, MBio, vol.6, issue.3, pp.598-00515, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01165213

J. Pizarro-cerda, D. Chorev, B. Geiger, and P. Cossart, The Diverse Family of Arp2/3 Complexes, Trends in Cell Biology, vol.27, issue.2, 2016.
DOI : 10.1016/j.tcb.2016.08.001

URL : https://hal.archives-ouvertes.fr/pasteur-01457856

P. Cossart, Actin-based motility of pathogens: the Arp2/3 complex is a central player. Microreview, Cellular Microbiology, vol.135, issue.3, pp.195-205, 2000.
DOI : 10.1016/S0960-9822(99)80243-7

C. Egile, T. Loisel, and V. Laurent, Icsa Protein Promotes Actin Nucleation by Arp2/3 Complex and Bacterial Actin-Based Motility, The Journal of Cell Biology, vol.60, issue.6, pp.1319-1332, 1999.
DOI : 10.1083/jcb.142.4.1001

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2156126/pdf

E. Gouin, C. Egile, and P. Dehoux, The RickA protein of Rickettsia conorii activates the Arp2/3 complex, Nature, vol.427, issue.6973, pp.457-461, 2004.
DOI : 10.1038/nature02318

S. Reed, A. Serio, and M. Welch, Rickettsia parkeri invasion of diverse host cells involves an Arp2/3 complex, WAVE complex and Rho-family GTPase-dependent pathway, Cellular Microbiology, vol.156, issue.4, pp.529-545, 2012.
DOI : 10.1083/jcb.200109057

E. Benanti, C. Nguyen, and M. Welch, Virulent Burkholderia Species Mimic Host Actin Polymerases to Drive Actin-Based Motility, Cell, vol.161, issue.2, pp.348-360, 2015.
DOI : 10.1016/j.cell.2015.02.044

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4393530

S. Cudmore, P. Cossart, G. Griffiths, and M. Way, Actin-based motility of vaccinia virus, Nature, vol.378, issue.6557, pp.636-638, 1995.
DOI : 10.1038/378636a0

C. Sitthidet, J. Stevens, T. Field, A. Layton, S. Korbsrisate et al., Actin-Based Motility of Burkholderia thailandensis Requires a Central Acidic Domain of BimA That Recruits and Activates the Cellular Arp2/3 Complex, Journal of Bacteriology, vol.192, issue.19, pp.5249-5252, 2010.
DOI : 10.1128/JB.00608-10

L. Stamm, J. Morisaki, and L. Gao, Escapes from Phagosomes and Is Propelled by Actin-based Motility, The Journal of Experimental Medicine, vol.66, issue.9, pp.1361-1368, 2003.
DOI : 10.1073/pnas.90.24.11890

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2194249

E. Gouin, J. Quereda, and P. Cossart, Intracellular Bacteria Find the Right Motion, Cell, vol.161, issue.2, pp.199-200, 2015.
DOI : 10.1016/j.cell.2015.03.035

URL : https://hal.archives-ouvertes.fr/pasteur-01165399

J. Pizarro-cerda, A. Kuhbacher, and P. Cossart, Entry of Listeria monocytogenes in Mammalian Epithelial Cells: An Updated View, Cold Spring Harbor Perspectives in Medicine, vol.2, issue.11, 2012.
DOI : 10.1101/cshperspect.a010009

E. Veiga and P. Cossart, Listeria hijacks the clathrin-dependent endocytic machinery to invade mammalian cells, Nature Cell Biology, vol.16, issue.9, pp.894-900, 2005.
DOI : 10.1046/j.1365-2958.1997.4621825.x

S. Conner and S. Schmid, Regulated portals of entry into the cell, Nature, vol.277, issue.6927, pp.37-44, 2003.
DOI : 10.1091/mbc.12.9.2578

J. Pizarro-cerda, M. Bonazzi, and P. Cossart, Clathrin-mediated endocytosis: What works for small, also works for big, BioEssays, vol.418, issue.Pt 12, pp.496-504, 2010.
DOI : 10.1002/bies.200900172

P. Cossart and A. Helenius, Endocytosis of Viruses and Bacteria, Cold Spring Harbor Perspectives in Biology, vol.6, issue.8, 2014.
DOI : 10.1101/cshperspect.a016972

M. Ehrlich, W. Boll, and A. Van-oijen, Endocytosis by Random Initiation and Stabilization of Clathrin-Coated Pits, Cell, vol.118, issue.5, pp.591-605, 2004.
DOI : 10.1016/j.cell.2004.08.017

E. Veiga and P. Cossart, The role of clathrin-dependent endocytosis in bacterial internalization, Trends in Cell Biology, vol.16, issue.10, pp.499-504, 2006.
DOI : 10.1016/j.tcb.2006.08.005

M. Bonazzi, L. Vasudevan, and A. Mallet, Clathrin phosphorylation is required for actin recruitment at sites of bacterial adhesion and internalization, The Journal of Cell Biology, vol.195, issue.3, pp.525-536, 2011.
DOI : 10.1091/mbc.E04-09-0774

M. Bonazzi, A. Kuhbacher, and A. Toledo-arana, A Common Clathrin-Mediated Machinery Co-ordinates Cell-Cell Adhesion and Bacterial Internalization, Traffic, vol.4, issue.12, pp.1653-1666, 2012.
DOI : 10.1091/mbc.4.6.647

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760411

S. Sousa, D. Cabanes, A. El-amraoui, C. Petit, M. Lecuit et al., Unconventional myosin VIIa and vezatin, two proteins crucial for Listeria entry into epithelial cells, Journal of Cell Science, vol.117, issue.10, pp.2121-2130, 2004.
DOI : 10.1242/jcs.01066

S. Mostowy and P. Cossart, Septins: the fourth component of the cytoskeleton, Nature Reviews Molecular Cell Biology, vol.22, issue.3, pp.183-194, 2012.
DOI : 10.1016/j.cub.2011.11.034

J. Pizarro-cerda, R. Jonquieres, E. Gouin, J. Vandekerckhove, J. Garin et al., Distinct protein patterns associated with Listeria monocytogenes InlA- or InlB-phagosomes, Cellular Microbiology, vol.59, issue.2, pp.101-115, 2002.
DOI : 10.1038/35052055

S. Mostowy, N. Tham, T. Danckaert, and A. , Septins Regulate Bacterial Entry into Host Cells, PLoS ONE, vol.15, issue.1, p.4196, 2009.
DOI : 10.1371/journal.pone.0004196.s003

URL : http://doi.org/10.1371/journal.pone.0004196

Y. Huang, M. Yan, R. Collins, J. Diciccio, S. Grinstein et al., Mammalian Septins Are Required for Phagosome Formation, Molecular Biology of the Cell, vol.19, issue.4, pp.1717-1726, 2008.
DOI : 10.1091/mbc.E07-07-0641

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2291437

S. Mostowy, M. Bonazzi, and M. Hamon, Entrapment of Intracytosolic Bacteria by Septin Cage-like Structures, Cell Host & Microbe, vol.8, issue.5, pp.433-444, 2010.
DOI : 10.1016/j.chom.2010.10.009

URL : https://hal.archives-ouvertes.fr/pasteur-01376115

P. Escoll, S. Mondino, R. M. Buchrieser, and C. , Targeting of host organelles by pathogenic bacteria: a sophisticated subversion strategy, Nature Reviews Microbiology, vol.21, issue.1, pp.5-19, 2016.
DOI : 10.1016/j.str.2013.02.024

URL : https://hal.archives-ouvertes.fr/pasteur-01326394

A. Lebreton, F. Stavru, and P. Cossart, Organelle targeting during bacterial infection: insights from Listeria, Trends in Cell Biology, vol.25, issue.6, pp.330-338, 2015.
DOI : 10.1016/j.tcb.2015.01.003

URL : https://hal.archives-ouvertes.fr/pasteur-01162370

F. Stavru, F. Bouillaud, A. Sartori, D. Ricquier, and P. Cossart, Listeria monocytogenes transiently alters mitochondrial dynamics during infection, Proceedings of the National Academy of Sciences, vol.580, issue.9, pp.3612-3617, 2011.
DOI : 10.1016/j.febslet.2006.03.057

URL : http://www.pnas.org/content/108/9/3612.full.pdf

F. Stavru, A. Palmer, C. Wang, R. Youle, and P. Cossart, Atypical mitochondrial fission upon bacterial infection, Proceedings of the National Academy of Sciences, vol.173, issue.4, pp.16003-16008, 2013.
DOI : 10.1083/jcb.200601002

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3791707

A. Pagliuso, T. Tham, and J. Stevens, A role for septin 2 in Drp1???mediated mitochondrial fission, EMBO reports, vol.17, issue.6, pp.858-873, 2016.
DOI : 10.15252/embr.201541612

URL : https://hal.archives-ouvertes.fr/pasteur-01574030

M. Suzuki, O. Danilchanka, and J. Mekalanos, Vibrio cholerae T3SS Effector VopE Modulates Mitochondrial Dynamics and Innate Immune Signaling by Targeting Miro GTPases, Cell Host & Microbe, vol.16, issue.5, pp.581-591, 2014.
DOI : 10.1016/j.chom.2014.09.015

URL : http://doi.org/10.1016/j.chom.2014.09.015

L. Fielden, Y. Kang, H. Newton, and D. Stojanovski, Targeting mitochondria: how intravacuolar bacterial pathogens manipulate mitochondria. Cell Tissue Res doi:10, pp.441-457, 2016.
DOI : 10.1007/s00441-016-2475-x

J. Malet, P. Cossart, and D. Ribet, Alteration of epithelial cell lysosomal integrity induced by bacterial cholesterol-dependent cytolysins, Cellular Microbiology, vol.17, issue.Pt A, pp.10-1111, 2016.
DOI : 10.1038/cdd.2009.184

M. Bewley, M. Naughton, and J. Preston, Pneumolysin Activates Macrophage Lysosomal Membrane Permeabilization and Executes Apoptosis by Distinct Mechanisms without Membrane Pore Formation, mBio, vol.5, issue.5, pp.1710-01714, 2014.
DOI : 10.1128/mBio.01710-14

URL : http://doi.org/10.1128/mbio.01710-14

M. Bewley, T. Pham, and H. Marriott, Proteomic evaluation and validation of cathepsin D regulated proteins in macrophages exposed to Streptococcus pneumoniae, Mol Cell Proteomics, vol.10, issue.6, pp.111-008193, 2011.

C. Kennedy, D. Smith, D. Lyras, A. Chakravorty, and J. Rood, Programmed Cellular Necrosis Mediated by the Pore-Forming ??-Toxin from Clostridium septicum, PLoS Pathogens, vol.134, issue.7, p.1000516, 2009.
DOI : 10.1371/journal.ppat.1000516.g007

URL : http://doi.org/10.1371/journal.ppat.1000516

S. Matsuda, N. Okada, T. Kodama, T. Honda, and T. Iida, A Cytotoxic Type III Secretion Effector of Vibrio parahaemolyticus Targets Vacuolar H+-ATPase Subunit c and Ruptures Host Cell Lysosomes, PLoS Pathogens, vol.445, issue.7, p.1002803, 2012.
DOI : 10.1371/journal.ppat.1002803.s007

L. Prince, S. Bianchi, and K. Vaughan, Subversion of a Lysosomal Pathway Regulating Neutrophil Apoptosis by a Major Bacterial Toxin, Pyocyanin, The Journal of Immunology, vol.180, issue.5, pp.3502-3511, 2008.
DOI : 10.4049/jimmunol.180.5.3502

H. Bierne, M. Hamon, and P. Cossart, Epigenetics and Bacterial Infections, Cold Spring Harbor Perspectives in Medicine, vol.2, issue.12, p.10272, 2012.
DOI : 10.1101/cshperspect.a010272

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3543073

J. Minarovits, Microbe-induced epigenetic alterations in host cells: The coming era of patho-epigenetics of microbial infections, Acta Microbiologica et Immunologica Hungarica, vol.56, issue.1, pp.1-19, 2009.
DOI : 10.1556/AMicr.56.2009.1.1

M. Hamon, E. Batsche, and B. Regnault, Histone modifications induced by a family of bacterial toxins, Proceedings of the National Academy of Sciences, vol.282, issue.20, pp.13467-13472, 2007.
DOI : 10.1074/jbc.M610926200

H. Eskandarian, F. Impens, and M. Nahori, A Role for SIRT2-Dependent Histone H3K18 Deacetylation in Bacterial Infection, Science, vol.13, issue.8, p.1238858, 2013.
DOI : 10.1038/nprot.2011.355

URL : https://hal.archives-ouvertes.fr/pasteur-00853764

R. Houtkooper, E. Pirinen, and J. Auwerx, Sirtuins as regulators of metabolism and healthspan, Nature Reviews Molecular Cell Biology, vol.20, issue.4, pp.225-238, 2012.
DOI : 10.1093/hmg/ddr089

H. Bierne and P. Cossart, When bacteria target the nucleus: the emerging family of nucleomodulins, Cellular Microbiology, vol.71, issue.5, pp.622-633, 2012.
DOI : 10.1111/j.1365-2958.2008.06524.x

A. Lebreton, G. Lakisic, and J. V. , A Bacterial Protein Targets the BAHD1 Chromatin Complex to Stimulate Type III Interferon Response, Science, vol.11, issue.6, pp.1319-1321, 2011.
DOI : 10.1111/j.1469-0691.2005.01146.x

URL : https://hal.archives-ouvertes.fr/cea-00819299

A. Lebreton, V. Job, and M. Ragon, Structural Basis for the Inhibition of the Chromatin Repressor BAHD1 by the Bacterial Nucleomodulin LntA, mBio, vol.5, issue.1, pp.775-00713, 2014.
DOI : 10.1128/mBio.00775-13

URL : https://hal.archives-ouvertes.fr/hal-01109386

H. Bierne, T. Tham, and E. Batsche, Human BAHD1 promotes heterochromatic gene silencing, Proceedings of the National Academy of Sciences, vol.84, issue.1, pp.13826-13831, 2009.
DOI : 10.1016/j.ygeno.2004.02.011

URL : https://hal.archives-ouvertes.fr/pasteur-00411478

D. Ribet, M. Hamon, and E. Gouin, Listeria monocytogenes impairs SUMOylation for efficient infection, Nature, vol.22, issue.7292, pp.1192-1195, 2010.
DOI : 10.1038/nature08963

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3627292

A. Beyer, H. Truchan, L. May, N. Walker, D. Borjesson et al., effector AmpA hijacks host cell SUMOylation, Cellular Microbiology, vol.79, issue.4, pp.504-519, 2015.
DOI : 10.1128/IAI.05422-11

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4664186

P. Dunphy, T. Luo, and J. Mcbride, Ehrlichia chaffeensis Exploits Host SUMOylation Pathways To Mediate Effector-Host Interactions and Promote Intracellular Survival, Infection and Immunity, vol.82, issue.10, pp.4154-4168, 2014.
DOI : 10.1128/IAI.01984-14

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4187855

S. Fritah, N. Lhocine, and F. Golebiowski, Sumoylation controls host anti-bacterial response to the gut invasive pathogen Shigella flexneri, EMBO reports, vol.15, issue.9, pp.965-972, 2014.
DOI : 10.15252/embr.201338386

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4198040

J. Kim, W. Stork, and M. Mudgett, Xanthomonas Type III Effector XopD Desumoylates Tomato Transcription Factor SlERF4 to Suppress Ethylene Responses and Promote Pathogen Growth, Cell Host & Microbe, vol.13, issue.2, pp.143-154, 2013.
DOI : 10.1016/j.chom.2013.01.006

URL : http://doi.org/10.1016/j.chom.2013.01.006

F. Impens, L. Radoshevich, P. Cossart, and D. Ribet, Mapping of SUMO sites and analysis of SUMOylation changes induced by external stimuli, Proceedings of the National Academy of Sciences, vol.6, issue.11, pp.12432-12437, 2014.
DOI : 10.1038/nmeth1109-786

URL : https://hal.archives-ouvertes.fr/pasteur-01104237

L. Radoshevich, F. Impens, and D. Ribet, ISG15 counteracts Listeria monocytogenes infection, Elife, vol.4, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01185203

G. Mackaness, CELLULAR RESISTANCE TO INFECTION, Journal of Experimental Medicine, vol.116, issue.3, pp.381-406, 1962.
DOI : 10.1084/jem.116.3.381

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2137547/pdf

C. Ladel, I. Flesch, J. Arnoldi, and S. Kaufmann, Studies with MHC-deficient knock-out mice reveal impact of both MHC I-and MHC II-dependent T cell responses on Listeria monocytogenes infection, J Immunol, vol.153, issue.7, pp.3116-3122, 1994.

S. Khan and V. Badovinac, Listeria monocytogenes: a model pathogen to study antigen-specific memory CD8 T cell responses, Seminars in Immunopathology, vol.40, issue.3, pp.301-310, 2015.
DOI : 10.1016/j.immuni.2014.03.007

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4439301

M. Lara-tejero and E. Pamer, T cell responses to Listeria monocytogenes, Current Opinion in Microbiology, vol.7, issue.1, pp.45-50, 2004.
DOI : 10.1016/j.mib.2003.12.002

F. Stavru, C. Archambaud, and P. Cossart, Cell biology and immunology of Listeria monocytogenes infections: novel insights, Immunological Reviews, vol.69, issue.1, pp.160-184, 2011.
DOI : 10.1128/IAI.69.3.1795-1807.2001

M. Lecuit, S. Dramsi, C. Gottardi, M. Fedor-chaiken, B. Gumbiner et al., A single amino acid in E-cadherin responsible for host specificity towards the human pathogen Listeria monocytogenes, The EMBO Journal, vol.18, issue.14, pp.3956-3963, 1999.
DOI : 10.1093/emboj/18.14.3956

M. Lecuit, S. Vandormael-pournin, and J. Lefort, A Transgenic Model for Listeriosis: Role of Internalin in Crossing the Intestinal Barrier, Science, vol.292, issue.5522, pp.1722-1725, 2001.
DOI : 10.1126/science.1059852

O. Disson, S. Grayo, and E. Huillet, Conjugated action of two species-specific invasion proteins for fetoplacental listeriosis, Nature, vol.37, issue.7216, pp.1114-1118, 2008.
DOI : 10.1038/nature07303

T. Wollert, B. Pasche, and M. Rochon, Extending the Host Range of Listeria monocytogenes by Rational Protein Design, Cell, vol.129, issue.5, pp.891-902, 2007.
DOI : 10.1016/j.cell.2007.03.049

Y. Tsai, O. Disson, H. Bierne, and M. Lecuit, Murinization of Internalin Extends Its Receptor Repertoire, Altering Listeria monocytogenes Cell Tropism and Host Responses, PLoS Pathogens, vol.7, issue.1, p.1003381, 2013.
DOI : 10.1371/journal.ppat.1003381.s016

K. Hoelzer, R. Pouillot, and S. Dennis, Animal models of listeriosis: a comparative review of the current state of the art and lessons learned, Veterinary Research, vol.43, issue.1, p.18, 2012.
DOI : 10.1023/A:1008868325009

O. Disson and M. Lecuit, In??vitro and in??vivo models to study human listeriosis: mind the gap, Microbes and Infection, vol.15, issue.14-15, pp.14-15, 2013.
DOI : 10.1016/j.micinf.2013.09.012

A. Baumler and V. Sperandio, Interactions between the microbiota and pathogenic bacteria in the gut, Nature, vol.589, issue.7610, pp.85-93, 2016.
DOI : 10.1016/j.mrrev.2004.08.001

N. Rolhion and B. Chassaing, When pathogenic bacteria meet the intestinal microbiota, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.2014, issue.1707, 1707.
DOI : 10.1101/cshperspect.a012427

C. Archambaud, O. Sismeiro, and J. Toedling, The Intestinal Microbiota Interferes with the microRNA Response upon Oral Listeria Infection, mBio, vol.4, issue.6, pp.707-00713, 2013.
DOI : 10.1128/mBio.00707-13

URL : https://hal.archives-ouvertes.fr/hal-01350904

K. Das, O. Garnica, and S. Dhandayuthapani, Modulation of Host miRNAs by Intracellular Bacterial Pathogens, Frontiers in Cellular and Infection Microbiology, vol.209, issue.27, p.79, 2016.
DOI : 10.1093/infdis/jiu006

P. Cotter, L. Draper, and E. Lawton, Listeriolysin S, a Novel Peptide Haemolysin Associated with a Subset of Lineage I Listeria monocytogenes, PLoS Pathogens, vol.278, issue.9, p.1000144, 2008.
DOI : 10.1371/journal.ppat.1000144.s003

J. Quereda, O. Dussurget, and M. Nahori, strains alters the host intestinal microbiota to favor infection, Proceedings of the National Academy of Sciences, vol.57, issue.1, pp.5706-5711, 2016.
DOI : 10.1186/s13059-014-0550-8

URL : https://hal.archives-ouvertes.fr/hal-01533881

P. Cotter, R. Ross, and C. Hill, Bacteriocins ??? a viable alternative to antibiotics?, Nature Reviews Microbiology, vol.76, issue.2, pp.95-105, 2013.
DOI : 10.1128/AEM.01061-09

S. Kommineni, D. Bretl, and V. Lam, Bacteriocin production augments niche competition by enterococci in the mammalian gastrointestinal tract, Nature, vol.22, issue.7575, pp.719-722, 2015.
DOI : 10.18637/jss.v022.i07

M. Rea, C. Sit, and E. Clayton, Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile, Proceedings of the National Academy of Sciences, vol.43, issue.1, pp.9352-9357, 2010.
DOI : 10.1021/bi0359527

A. Lebreton, F. Brisse, S. Cossart, and P. , 90 years of listeriology. Microbes and Infection doi:10, 1926.
URL : https://hal.archives-ouvertes.fr/hal-01400517