C. Blair and K. Olson, The Role of RNA Interference (RNAi) in Arbovirus-Vector Interactions, Viruses, vol.156, issue.2, pp.820-843, 2015.
DOI : 10.1098/rspb.2012.2437

C. Campbell, K. Keene, D. Brackney, K. Olson, C. Blair et al., Aedes aegypti uses RNA interference in defense against Sindbis virus infection, BMC Microbiology, vol.8, issue.1, p.47, 2008.
DOI : 10.1186/1471-2180-8-47

URL : http://doi.org/10.1186/1471-2180-8-47

K. Keene, B. Foy, I. Sanchez-vargas, B. Beaty, C. Blair et al., RNA interference acts as a natural antiviral response to O'nyong-nyong virus (Alphavirus; Togaviridae) infection of Anopheles gambiae, Proceedings of the National Academy of Sciences, vol.427, issue.6975, pp.17240-17245, 2004.
DOI : 10.1038/nature02302

M. Mcfarlane, C. Arias-goeta, E. Martin, O. Hara, Z. Lulla et al., Characterization of Aedes aegypti Innate-Immune Pathways that Limit Chikungunya Virus Replication, PLoS Neglected Tropical Diseases, vol.89, issue.7, p.2994, 2014.
DOI : 10.1371/journal.pntd.0002994.t001

URL : https://hal.archives-ouvertes.fr/hal-01343066

I. Sánchez-vargas, J. Scott, B. Poole-smith, A. Franz, V. Barbosa-solomieu et al., Dengue Virus Type 2 Infections of Aedes aegypti Are Modulated by the Mosquito's RNA Interference Pathway, PLoS Pathogens, vol.35, issue.2, p.1000299, 2009.
DOI : 10.1371/journal.ppat.1000299.t001

E. Schnettler, M. Ratinier, M. Watson, A. Shaw, M. Mcfarlane et al., RNA Interference Targets Arbovirus Replication in Culicoides Cells, Journal of Virology, vol.87, issue.5, pp.2441-245402848, 2013.
DOI : 10.1128/JVI.02848-12

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3571378

R. Siu, R. Fragkoudis, P. Simmonds, C. Donald, M. Chase-topping et al., Antiviral RNA Interference Responses Induced by Semliki Forest Virus Infection of Mosquito Cells: Characterization, Origin, and Frequency-Dependent Functions of Virus-Derived Small Interfering RNAs, Journal of Virology, vol.85, issue.6, pp.2907-2917, 2011.
DOI : 10.1128/JVI.02052-10

Q. Wu, Y. Luo, R. Lu, N. Lau, E. Lai et al., Virus discovery by deep sequencing and assembly of virus-derived small silencing RNAs, Proceedings of the National Academy of Sciences, vol.24, issue.8, pp.1606-1611, 2010.
DOI : 10.1099/vir.0.012104-0

D. Brackney, J. Scott, F. Sagawa, J. Woodward, N. Miller et al., C6/36 Aedes albopictus Cells Have a Dysfunctional Antiviral RNA Interference Response, PLoS Neglected Tropical Diseases, vol.36, issue.7, p.856, 2010.
DOI : 10.1371/journal.pntd.0000856.t001

URL : http://doi.org/10.1371/journal.pntd.0000856

A. Hess, A. Prasad, A. Ptitsyn, G. Ebel, K. Olson et al., Small RNA profiling of dengue virusmosquito interactions implicates the piwi RNA pathway in anti-viral defense, BMC Microbiol, vol.11, issue.45, 2011.

P. Léger, E. Lara, B. Jagla, O. Sismeiro, Z. Mansuroglu et al., Dicer-2- and Piwi-Mediated RNA Interference in Rift Valley Fever Virus-Infected Mosquito Cells, Journal of Virology, vol.87, issue.3, pp.1631-164802795, 2013.
DOI : 10.1128/JVI.02795-12

E. Morazzani, M. Wiley, M. Murreddu, Z. Adelman, and K. Myles, Production of Virus-Derived Ping-Pong-Dependent piRNA-like Small RNAs in the Mosquito Soma, PLoS Pathogens, vol.38, issue.1, 2012.
DOI : 10.1371/journal.ppat.1002470.s005

E. Schnettler, C. Donald, S. Human, M. Watson, R. Siu et al., Knockdown of piRNA pathway proteins results in enhanced Semliki Forest virus production in mosquito cells, Journal of General Virology, vol.94, issue.Pt_7, pp.1680-1689, 2013.
DOI : 10.1099/vir.0.053850-0

J. Scott, D. Brackney, C. Campbell, V. Bondu-hawkins, B. Hjelle et al., Comparison of Dengue Virus Type 2-Specific Small RNAs from RNA Interference-Competent and ???Incompetent Mosquito Cells, PLoS Neglected Tropical Diseases, vol.6, issue.10, p.848, 2010.
DOI : 10.1371/journal.pntd.0000848.t002

N. Vodovar, A. Bronkhorst, K. Van-cleef, P. Miesen, H. Blanc et al., Arbovirus-Derived piRNAs Exhibit a Ping-Pong Signature in Mosquito Cells, PLoS ONE, vol.14, issue.1, p.30861, 2012.
DOI : 10.1371/journal.pone.0030861.t001

URL : https://hal.archives-ouvertes.fr/pasteur-01379361

M. Ghildiyal and P. Zamore, Small silencing RNAs: an expanding universe, Nature Reviews Genetics, vol.426, issue.2, pp.94-108, 2009.
DOI : 10.1016/j.cub.2004.01.035

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2724769

V. Kim, J. Han, and M. Siomi, Biogenesis of small RNAs in animals, Nature Reviews Molecular Cell Biology, vol.274, issue.2, pp.126-139, 2009.
DOI : 10.4161/rna.1.1.943

A. Aravin, G. Hannon, and J. Brennecke, The Piwi-piRNA Pathway Provides an Adaptive Defense in the Transposon Arms Race, Science, vol.8, issue.4, pp.761-764, 2007.
DOI : 10.1038/nature05914

J. Brennecke, A. Aravin, A. Stark, M. Dus, M. Kellis et al., Discrete Small RNA-Generating Loci as Master Regulators of Transposon Activity in Drosophila, Cell, vol.128, issue.6, pp.1089-1103, 2007.
DOI : 10.1016/j.cell.2007.01.043

L. Gunawardane, K. Saito, K. Nishida, K. Miyoshi, Y. Kawamura et al., A Slicer-Mediated Mechanism for Repeat-Associated siRNA 5' End Formation in Drosophila, Science, vol.315, issue.5818, pp.1587-1590, 2007.
DOI : 10.1126/science.1140494

K. Saito, K. Nishida, T. Mori, Y. Kawamura, K. Miyoshi et al., Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome, Genes & Development, vol.20, issue.16, pp.2214-2222, 2006.
DOI : 10.1101/gad.1454806

E. Cenik and P. Zamore, Argonaute proteins, Current Biology, vol.21, issue.12, pp.446-449, 2011.
DOI : 10.1016/j.cub.2011.05.020

URL : http://doi.org/10.1016/j.cub.2011.05.020

H. Ishizu, H. Siomi, and M. Siomi, Biology of PIWI-interacting RNAs: new insights into biogenesis and function inside and outside of germlines, Genes & Development, vol.26, issue.21, pp.2361-2373, 2012.
DOI : 10.1101/gad.203786.112

K. Senti and J. Brennecke, The piRNA pathway: a fly's perspective on the guardian of the genome, Trends in Genetics, vol.26, issue.12, pp.499-509, 2010.
DOI : 10.1016/j.tig.2010.08.007

C. Campbell, W. Black, A. Hess, and B. Foy, Comparative genomics of small RNA regulatory pathway components in vector mosquitoes, BMC Genomics, vol.9, issue.1, p.425, 2008.
DOI : 10.1186/1471-2164-9-425

P. Miesen, E. Girardi, and R. Van-rij, mosquito cells, Nucleic Acids Research, vol.43, issue.13, pp.6545-6556, 2015.
DOI : 10.1093/nar/gkv590

URL : https://hal.archives-ouvertes.fr/pasteur-01379361

P. Miesen, A. Ivens, A. Buck, and R. Van-rij, Small RNA Profiling in Dengue Virus 2-Infected Aedes Mosquito Cells Reveals Viral piRNAs and Novel Host miRNAs, PLOS Neglected Tropical Diseases, vol.40, issue.Unit 19, 2016.
DOI : 10.1371/journal.pntd.0004452.s007

URL : http://doi.org/10.1371/journal.pntd.0004452

F. Diao and B. White, A Novel Approach for Directing Transgene Expression in Drosophila: T2A-Gal4 In-Frame Fusion, Genetics, vol.190, issue.3, pp.1139-1144, 2012.
DOI : 10.1534/genetics.111.136291

M. Anderson, T. Gross, K. Myles, and Z. Adelman, Validation of novel promoter sequences derived from two endogenous ubiquitin genes in transgenic Aedes aegypti, Insect Molecular Biology, vol.18, issue.1, pp.441-449, 2010.
DOI : 10.1128/MCB.8.11.4727

J. Peleg, Growth of arboviruses in monolayers from subcultured mosquito embryo cells, Virology, vol.35, issue.4, pp.617-619, 1968.
DOI : 10.1016/0042-6822(68)90293-6

R. Aliyari, Q. Wu, H. Li, X. Wang, F. Li et al., Mechanism of Induction and Suppression of Antiviral Immunity Directed by Virus-Derived Small RNAs in Drosophila, Cell Host & Microbe, vol.4, issue.4, pp.387-397, 2008.
DOI : 10.1016/j.chom.2008.09.001

H. Chotkowski, A. Ciota, Y. Jia, F. Puig-basagoiti, L. Kramer et al., West Nile virus infection of Drosophila melanogaster induces a protective RNAi response, Virology, vol.377, issue.1, pp.197-206, 2008.
DOI : 10.1016/j.virol.2008.04.021

D. Galiana-arnoux, C. Dostert, A. Schneemann, J. Hoffmann, and J. Imler, Essential function in vivo for Dicer-2 in host defense against RNA viruses in drosophila, Nature Immunology, vol.69, issue.6, pp.590-597, 2006.
DOI : 10.1038/nsmb1005

K. Myles, M. Wiley, E. Morazzani, and Z. Adelman, Alphavirus-derived small RNAs modulate pathogenesis in disease vector mosquitoes, Proceedings of the National Academy of Sciences, vol.5, issue.3, 2008.
DOI : 10.1371/journal.pbio.0050057

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2604946

L. Sabin, S. Hanna, and S. Cherry, Innate antiviral immunity in Drosophila, Current Opinion in Immunology, vol.22, issue.1, pp.4-9, 2010.
DOI : 10.1016/j.coi.2010.01.007

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2831143

M. Saleh, M. Tassetto, R. Van-rij, B. Goic, V. Gausson et al., Antiviral immunity in Drosophila requires systemic RNA interference spread, Nature, vol.31, issue.7236, pp.346-350, 2009.
DOI : 10.1038/nature07712

URL : https://hal.archives-ouvertes.fr/pasteur-00460853

I. Dietrich, X. Shi, M. Mcfarlane, M. Watson, A. Blomström et al., The Antiviral RNAi Response in Vector and Non-vector Cells against Orthobunyaviruses, PLOS Neglected Tropical Diseases, vol.8, issue.7, 2017.
DOI : 10.1371/journal.pntd.0005272.s006

X. Chen, X. Jiang, J. Gu, M. Xu, Y. Wu et al., , reveals insights into its biology, genetics, and evolution, Proceedings of the National Academy of Sciences, vol.17, issue.2, pp.5907-5915, 2015.
DOI : 10.1016/j.ibmb.2013.11.001

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4640774

S. Rainey, J. Martinez, M. Mcfarlane, P. Juneja, P. Sarkies et al., Wolbachia Blocks Viral Genome Replication Early in Infection without a Transcriptional Response by the Endosymbiont or Host Small RNA Pathways, PLOS Pathogens, vol.26, issue.1, p.1005536, 2016.
DOI : 10.1371/journal.ppat.1005536.s006

J. Ongus, E. Roode, C. Pleij, J. Vlak, and M. Van-oers, The 5' non-translated region of Varroa destructor virus 1 (genus Iflavirus): structure prediction and IRES activity in Lymantria dispar cells, Journal of General Virology, vol.87, issue.11, pp.3397-3407, 2006.
DOI : 10.1099/vir.0.82122-0

A. Bassett, C. Tibbit, C. Ponting, and J. Liu, Mutagenesis and homologous recombination in Drosophila cell lines using CRISPR/Cas9, Biology Open, vol.3, issue.1, pp.42-49, 2014.
DOI : 10.1242/bio.20137120

URL : http://doi.org/10.1242/bio.20137120

J. Rodriguez-andres, R. S. Varjak, M. Chase-topping, M. Beck, M. Ferguson et al., Phenoloxidase Activity Acts as a Mosquito Innate Immune Response against Infection with Semliki Forest Virus, PLoS Pathogens, vol.278, issue.11, p.1002977, 2012.
DOI : 10.1371/journal.ppat.1002977.g007

URL : http://doi.org/10.1371/journal.ppat.1002977

N. Tamberg, V. Lulla, R. Fragkoudis, A. Lulla, J. Fazakerley et al., Insertion of EGFP into the replicase gene of Semliki Forest virus results in a novel, genetically stable marker virus, Journal of General Virology, vol.88, issue.4, pp.1225-1230, 2007.
DOI : 10.1099/vir.0.82436-0

M. Watson, E. Schnettler, and A. Kohl, viRome: an R package for the visualization and analysis of viral small RNA sequence datasets, Bioinformatics, vol.29, issue.15, pp.1902-1903, 2013.
DOI : 10.1093/bioinformatics/btt297

G. Pall and A. Hamilton, Improved northern blot method for enhanced detection of small RNA, Nature Protocols, vol.20, issue.6, pp.1077-1084, 2008.
DOI : 10.1038/nprot.2008.67