R. Abu-issa and M. Kirby, Heart Field: From Mesoderm to Heart Tube, Annual Review of Cell and Developmental Biology, vol.23, issue.1, pp.45-68, 2007.
DOI : 10.1146/annurev.cellbio.23.090506.123331

F. Bajolle, S. Zaffran, S. Meilhac, M. Dandonneau, T. Chang et al., Myocardium at the base of the aorta and pulmonary trunk is prefigured in the outflow tract of the heart and in subdomains of the second heart field, Developmental Biology, vol.313, issue.1, pp.25-34, 2008.
DOI : 10.1016/j.ydbio.2007.09.023

URL : https://hal.archives-ouvertes.fr/hal-00311126

F. Bajolle, S. Zaffran, J. Losay, P. Ou, M. Buckingham et al., Conotruncal defects associated with anomalous pulmonary venous connections, Archives of Cardiovascular Diseases, vol.102, issue.2, pp.105-110, 2009.
DOI : 10.1016/j.acvd.2008.04.010

URL : http://doi.org/10.1016/j.acvd.2008.04.010

A. Bondue, G. Lapouge, C. Paulissen, C. Semeraro, M. Iacovino et al., Mesp1 Acts as a Master Regulator of Multipotent Cardiovascular Progenitor Specification, Cell Stem Cell, vol.3, issue.1, pp.69-84, 2008.
DOI : 10.1016/j.stem.2008.06.009

A. Bondue, S. Tannler, G. Chiapparo, S. Chabab, M. Ramialison et al., Defining the earliest step of cardiovascular progenitor specification during embryonic stem cell differentiation, The Journal of Cell Biology, vol.126, issue.5, pp.751-765, 2011.
DOI : 10.1016/j.mod.2008.06.007

M. Bressan, G. Liu, and T. Mikawa, Early Mesodermal Cues Assign Avian Cardiac Pacemaker Fate Potential in a Tertiary Heart Field, Science, vol.6, issue.3, pp.744-748, 2013.
DOI : 10.1186/1741-7007-6-40

C. Brown, J. Wenning, M. Lu, D. Epstein, E. Meyers et al., Cre-mediated excision of Fgf8 in the Tbx1 expression domain reveals a critical role for Fgf8 in cardiovascular development in the mouse, Developmental Biology, vol.267, issue.1, pp.190-202, 2004.
DOI : 10.1016/j.ydbio.2003.10.024

M. Buckingham and S. Meilhac, Tracing Cells for Tracking Cell Lineage and Clonal Behavior, Developmental Cell, vol.21, issue.3, pp.394-409, 2011.
DOI : 10.1016/j.devcel.2011.07.019

M. Buckingham, C. Biben, K. Lawson, E. Olson, R. Harvey et al., Fate mapping of pre-cardiac cells in the developing mouse, In Genetic control of heart development, pp.31-33, 1997.

C. Cai, X. Liang, Y. Shi, P. Chu, S. Pfaff et al., Isl1 Identifies a Cardiac Progenitor Population that Proliferates Prior to Differentiation and Contributes a Majority of Cells to the Heart, Developmental Cell, vol.5, issue.6, pp.877-889, 2003.
DOI : 10.1016/S1534-5807(03)00363-0

C. Cai, J. Martin, Y. Sun, L. Cui, L. Wang et al., A myocardial lineage derives from Tbx18 epicardial cells, Nature, vol.279, issue.7200, pp.104-108, 2008.
DOI : 10.1016/S0002-9440(10)61108-X

P. Chan-thomas, R. Thompson, B. Robert, M. Yacoub, and P. Barton, Expression of homeobox genes Msx-1 (Hox-7) and Msx-2 (Hox-8) during cardiac development in the chick, Developmental Dynamics, vol.353, issue.Suppl, pp.203-216, 1993.
DOI : 10.1038/353443a0

V. Christoffels, P. Habets, D. Franco, M. Campione, F. De-jong et al., Chamber Formation and Morphogenesis in the Developing Mammalian Heart, Developmental Biology, vol.223, issue.2, pp.266-278, 2000.
DOI : 10.1006/dbio.2000.9753

V. Christoffels, M. Mommersteeg, M. Trowe, O. Prall, C. De-gier-de-vries et al., Formation of the Venous Pole of the Heart From an Nkx2-5-Negative Precursor Population Requires Tbx18, Circulation Research, vol.98, issue.12, pp.1555-1563, 2006.
DOI : 10.1161/01.RES.0000227571.84189.65

V. Christoffels, T. Grieskamp, J. Norden, M. Mommersteeg, C. Rudat et al., Cardiac Cell Lineages that Form the Heart Cite this article as Cold Spring Harb Perspect Med Tbx18 and the fate of epicardial progenitors, Nature, vol.4, issue.458, pp.8-9, 2009.

C. Cui, T. Cheuvront, R. Lansford, R. Moreno-rodriguez, T. Schultheiss et al., Dynamic positional fate map of the primary heart-forming region, Developmental Biology, vol.332, issue.2, pp.212-222, 2009.
DOI : 10.1016/j.ydbio.2009.05.570

R. David, C. Brenner, J. Stieber, F. Schwarz, S. Brunner et al., MesP1 drives vertebrate cardiovascular differentiation through Dkk-1-mediated blockade of Wnt-signalling, Nature Cell Biology, vol.127, issue.3, pp.338-345, 2008.
DOI : 10.1073/pnas.2434235100

B. Delorme, E. Dahl, T. Jarry-guichard, J. Briand, K. Willecke et al., Expression Pattern of Connexin Gene Products at the Early Developmental Stages of the Mouse Cardiovascular System, Circulation Research, vol.81, issue.3, pp.423-437, 1997.
DOI : 10.1161/01.RES.81.3.423

D. Val, S. Chi, N. Meadows, S. Minovitsky, S. Anderson et al., Combinatorial Regulation of Endothelial Gene Expression by Ets and Forkhead Transcription Factors, Cell, vol.135, issue.6, pp.1053-1064, 2008.
DOI : 10.1016/j.cell.2008.10.049

E. Dodou, M. Verzi, J. Anderson, S. Xu, and B. Black, Mef2c is a direct transcriptional target of ISL1 and GATA factors in the anterior heart field during mouse embryonic development, Development, vol.131, issue.16, pp.3931-3942, 2004.
DOI : 10.1242/dev.01256

J. Dominguez, S. Meilhac, Y. Bland, M. Buckingham, and N. Brown, Asymmetric Fate of the Posterior Part of the Second Heart Field Results in Unexpected Left/Right Contributions to Both Poles of the Heart, Circulation Research, vol.111, issue.10, pp.1323-1335, 2012.
DOI : 10.1161/CIRCRESAHA.112.271247

S. Dunwoodie, T. Rodriguez, and R. Beddington, Msg1 and Mrg1, founding members of a gene family, show distinct patterns of gene expression during mouse embryogenesis, Mechanisms of Development, vol.72, issue.1-2, pp.27-40, 1998.
DOI : 10.1016/S0925-4773(98)00011-2

A. Ferdous, A. Caprioli, M. Iacovino, C. Martin, J. Morris et al., Nkx2-5 transactivates the Ets-related protein 71 gene and specifies an endothelial/endocardial fate in the developing embryo, Proceedings of the National Academy of Sciences, vol.222, issue.3, pp.814-819, 2009.
DOI : 10.1002/dvdy.1199

D. Franco, S. Meilhac, V. Christoffels, A. Kispert, M. Buckingham et al., Left and right ventricular contributions to the formation of the interventricular septum in the mouse heart, Developmental Biology, vol.294, issue.2, pp.366-375, 2006.
DOI : 10.1016/j.ydbio.2006.02.045

URL : https://hal.archives-ouvertes.fr/hal-00311136

D. Galli, J. Dominguez, S. Zaffran, A. Munk, N. Brown et al., Atrial myocardium derives from the posterior region of the second heart field, which acquires left-right identity as Pitx2c is expressed, Development, vol.135, issue.6, pp.1157-1167, 2008.
DOI : 10.1242/dev.014563

URL : https://hal.archives-ouvertes.fr/hal-00311155

B. Galvez, M. Sampaolesi, A. Barbuti, A. Crespi, D. Covarello et al., Cardiac mesoangioblasts are committed, self-renewable progenitors, associated with small vessels of juvenile mouse ventricle, Cell Death and Differentiation, vol.2, issue.9, pp.1417-1428, 2008.
DOI : 10.1016/S0894-7317(89)80013-6

V. Garcia-martinez and G. Schoenwolf, Primitive-Streak Origin of the Cardiovascular System in Avian Embryos, Developmental Biology, vol.159, issue.2, pp.706-719, 1993.
DOI : 10.1006/dbio.1993.1276

B. Gelb, M. Brueckner, W. Chung, E. Goldmuntz, J. Kaltman et al., The Congenital Heart Disease Genetic Network Study: Rationale, design, and early results, Circ Res, vol.112, pp.698-706, 2013.

L. Gorza, S. Schiaffino, and M. Vitadello, Heart conduction system: a neural crest derivative?, Brain Research, vol.457, issue.2, pp.360-366, 1988.
DOI : 10.1016/0006-8993(88)90707-X

R. Gourdie, Y. Wei, D. Kim, S. Klatt, and T. Mikawa, Endothelin-induced conversion of embryonic heart muscle cells into impulse-conducting Purkinje fibers, Proceedings of the National Academy of Sciences, vol.264, issue.5155, pp.6815-6818, 1998.
DOI : 10.1126/science.8140423

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC22646/pdf

J. Grego-bessa, L. Luna-zurita, G. Del-monte, V. Bolos, P. Melgar et al., Notch Signaling Is Essential for Ventricular Chamber Development, Developmental Cell, vol.12, issue.3, pp.415-429, 2007.
DOI : 10.1016/j.devcel.2006.12.011

URL : http://doi.org/10.1016/j.devcel.2006.12.011

V. Gupta and K. Poss, Clonally dominant cardiomyocytes direct heart morphogenesis, Nature, vol.20, issue.7395, pp.479-484, 2012.
DOI : 10.1016/j.devcel.2011.01.010

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3340018

I. Harel, E. Nathan, L. Tirosh-finkel, H. Zigdon, N. Guimaraes-camboa et al., Distinct Origins and Genetic Programs of Head Muscle Satellite Cells, Developmental Cell, vol.16, issue.6, pp.822-832, 2009.
DOI : 10.1016/j.devcel.2009.05.007

URL : http://doi.org/10.1016/j.devcel.2009.05.007

I. Harris and B. Black, Development of the Endocardium, Pediatric Cardiology, vol.3, issue.Spec Iss, pp.391-399, 2010.
DOI : 10.1007/978-1-4419-8871-3_1

W. Hoogaars, A. Tessari, A. Moorman, P. De-boer, J. Hagoort et al., The transcriptional repressor Tbx3 delineates the developing central conduction system of the heart, Cardiovascular Research, vol.62, issue.3, pp.489-499, 2004.
DOI : 10.1016/j.cardiores.2004.01.030

M. Hutson, X. Zeng, A. Kim, E. Antoon, S. Harward et al., Arterial pole progenitors interpret opposing FGF/BMP signals to proliferate or differentiate, Development, vol.137, issue.18, pp.3001-3011, 2010.
DOI : 10.1242/dev.051565

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2926953

S. Kattman, T. Huber, and G. Keller, Multipotent Flk-1+ Cardiovascular Progenitor Cells??Give Rise to the Cardiomyocyte, Endothelial, and Vascular Smooth Muscle Lineages, Developmental Cell, vol.11, issue.5, pp.723-732, 2006.
DOI : 10.1016/j.devcel.2006.10.002

M. Kaufman and V. Navaratnam, Early differentiation of the heart in mouse embryos, J Anat, vol.133, pp.235-246, 1981.

R. Kelly, N. Brown, and M. Buckingham, The Arterial Pole of the Mouse Heart Forms from Fgf10-Expressing Cells in Pharyngeal Mesoderm, Developmental Cell, vol.1, issue.3, pp.435-440, 2001.
DOI : 10.1016/S1534-5807(01)00040-5

S. Kinder, T. Tsang, G. Quinlan, A. Hadjantonakis, A. Nagy et al., The orderly allocation of mesodermal cells to the extraembryonic structures and the anteroposterior axis during gastrulation of the mouse embryo, Development, vol.126, pp.4691-4701, 1999.

S. Kitajima, A. Takagi, T. Inoue, and Y. Saga, MesP1 and MesP2 are essential for the development of cardiac mesoderm, Development, vol.127, pp.3215-3226, 2000.

S. Kitajima, S. Miyagawa-tomita, T. Inoue, J. Kanno, and Y. Saga, -nonexpressing cells contribute to the ventricular cardiac conduction system, Developmental Dynamics, vol.212, issue.2, pp.395-402, 2006.
DOI : 10.1007/s00429-004-0401-6

URL : https://hal.archives-ouvertes.fr/jpa-00226225

L. Kochilas, J. Li, J. F. Buck, C. Epstein, and J. , p57Kip2 Expression Is Enhanced During Mid-Cardiac Murine Development and Is Restricted to Trabecular Myocardium, Pediatric Research, vol.29, pp.635-642, 1999.
DOI : 10.1006/jmcc.1997.0499

F. Kraus, B. Haenig, and A. Kispert, Cloning and expression analysis of the mouse T-box gene Tbx18, Mechanisms of Development, vol.100, issue.1, pp.83-86, 2001.
DOI : 10.1016/S0925-4773(00)00494-9

B. Kruithof, B. Van-wijk, S. Somi, M. Kruithof-de-julio, P. Pomares et al., BMP and FGF regulate the differentiation of multipotential pericardial mesoderm into the myocardial or epicardial lineage, Developmental Biology, vol.295, issue.2, pp.507-522, 2006.
DOI : 10.1016/j.ydbio.2006.03.033

W. Lamers, D. Jong, F. , D. Groot, I. Moorman et al., The development of the avian conduction system, a review, Eur J Morphol, vol.29, pp.233-253, 1991.

K. Lawson and R. Pedersen, Cell fate, morphogenetic movement and population kinetics of embryonic endoderm at the time of germ layer formation in the mouse, Development, vol.101, pp.627-652, 1987.

F. Lescroart, R. Kelly, L. Garrec, J. Nicolas, J. Meilhac et al., Clonal analysis reveals common lineage relationships between head muscles and second heart field derivatives in the mouse embryo, Development, vol.137, issue.19, pp.3269-3279, 2010.
DOI : 10.1242/dev.050674

URL : https://hal.archives-ouvertes.fr/hal-00567073

F. Lescroart, T. Mohun, S. Meilhac, M. Bennett, and M. Buckingham, Lineage Tree for the Venous Pole of the Heart: Clonal Analysis Clarifies Controversial Genealogy Based on Genetic Tracing, Circulation Research, vol.111, issue.10, pp.1313-1322, 2012.
DOI : 10.1161/CIRCRESAHA.112.271064

X. Liang, G. Wang, L. Lin, J. Lowe, Q. Zhang et al., HCN4 Dynamically Marks the First Heart Field and Conduction System Precursors, Circulation Research, vol.113, issue.4, pp.399-407, 2013.
DOI : 10.1161/CIRCRESAHA.113.301588

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4017870

K. Linask, K. Knudsen, and Y. Gui, N-Cadherin???Catenin Interaction: Necessary Component of Cardiac Cell Compartmentalization during Early Vertebrate Heart Development, Developmental Biology, vol.185, issue.2, pp.148-164, 1997.
DOI : 10.1006/dbio.1997.8570

R. Lindsley, J. Gill, T. Murphy, E. Langer, M. Cai et al., Mesp1 Coordinately Regulates Cardiovascular Fate Restriction and Epithelial-Mesenchymal Transition in Differentiating ESCs, Cell Stem Cell, vol.3, issue.1, pp.55-68, 2008.
DOI : 10.1016/j.stem.2008.04.004

URL : http://doi.org/10.1016/j.stem.2008.04.004

Q. Ma, B. Zhou, and W. Pu, Reassessment of Isl1 and Nkx2-5 cardiac fate maps using a Gata4-based reporter of Cre activity, Developmental Biology, vol.323, issue.1, pp.98-104, 2008.
DOI : 10.1016/j.ydbio.2008.08.013

O. Martinez-estrada, L. Lettice, A. Essafi, J. Guadix, J. Slight et al., Wt1 is required for cardiovascular progenitor cell formation through transcriptional control of Snail and E-cadherin, Nature Genetics, vol.25, issue.1, pp.89-93, 2010.
DOI : 10.1126/science.1068206

S. Meilhac, R. Kelly, D. Rocancourt, S. Eloy-trinquet, J. Nicolas et al., A retrospective clonal analysis of the myocardium reveals two phases of clonal growth in the developing mouse heart, Development, vol.130, issue.16, pp.3877-3889, 2003.
DOI : 10.1242/dev.00580

URL : https://hal.archives-ouvertes.fr/pasteur-00460887

S. Meilhac, M. Esner, R. Kelly, J. Nicolas, and M. Buckingham, The Clonal Origin of Myocardial Cells in Different Regions of the Embryonic Mouse Heart, Developmental Cell, vol.6, issue.5, pp.685-698, 2004.
DOI : 10.1016/S1534-5807(04)00133-9

URL : https://hal.archives-ouvertes.fr/hal-00311144

E. Merki, M. Zamora, A. Raya, Y. Kawakami, J. Wang et al., Epicardial retinoid X receptor ?? is required for myocardial growth and coronary artery formation, Proceedings of the National Academy of Sciences, vol.8, issue.1, pp.18455-18460, 2005.
DOI : 10.1016/j.devcel.2004.12.002

T. Mikawa, L. Cohen-gould, and D. Fischman, Clonal analysis of cardiac morphogenesis in the chicken embryo using a replication-defective retrovirus. III: Polyclonal origin of adjacent ventricular myocytes, Developmental Dynamics, vol.255, issue.2, pp.133-141, 1992.
DOI : 10.1126/science.1734520

L. Miquerol, N. Moreno-rascon, S. Beyer, L. Dupays, S. Meilhac et al., Biphasic Development of the Mammalian Ventricular Conduction System, Circulation Research, vol.107, issue.1, pp.153-161, 2010.
DOI : 10.1161/CIRCRESAHA.110.218156

URL : https://hal.archives-ouvertes.fr/hal-00566990

L. Miquerol, A. Bellon, N. Moreno, S. Beyer, S. Meilhac et al., Resolving cell lineage contributions to the ventricular conduction system with a Cx40-GFP allele: A dual contribution of the first and second heart fields, Developmental Dynamics, vol.232, issue.6, pp.665-677, 2013.
DOI : 10.1002/ar.1092320111

URL : https://hal.archives-ouvertes.fr/hal-00862111

A. Misfeldt, S. Boyle, K. Tompkins, V. Bautch, P. Labosky et al., Endocardial cells are a distinct endothelial lineage derived from Flk1+ multipotent cardiovascular progenitors, Developmental Biology, vol.333, issue.1, pp.78-89, 2009.
DOI : 10.1016/j.ydbio.2009.06.033

URL : http://doi.org/10.1016/j.ydbio.2009.06.033

C. Moens, B. Stanton, L. Parada, and J. Rossant, Defects in heart and lung development in compound heterozygotes for two different targeted mutations at the N-myc locus, Development, vol.119, pp.485-499, 1993.

M. Mommersteeg, J. Dominguez, C. Wiese, J. Norden, C. De-gier-de-vries et al., The sinus venosus progenitors separate and diversify from the first and second heart fields early in development, Cardiovascular Research, vol.87, issue.1, pp.92-101, 2010.
DOI : 10.1093/cvr/cvq033

A. Moretti, L. Caron, A. Nakano, J. Lam, A. Bernshausen et al., Multipotent Embryonic Isl1+ Progenitor Cells Lead to Cardiac, Smooth Muscle, and Endothelial Cell Diversification, Cell, vol.127, issue.6, pp.1151-1165, 2006.
DOI : 10.1016/j.cell.2006.10.029

URL : http://doi.org/10.1016/j.cell.2006.10.029

O. Nakagawa, M. Nakagawa, J. Richardson, E. Olson, and D. Srivastava, HRT1, HRT2, and HRT3: A New Subclass of bHLH Transcription Factors Marking Specific Cardiac, Somitic, and Pharyngeal Arch Segments, Developmental Biology, vol.216, issue.1, pp.72-84, 1999.
DOI : 10.1006/dbio.1999.9454

E. Nathan, A. Monovich, L. Tirosh-finkel, Z. Harrelson, T. Rousso et al., The contribution of Islet1-expressing splanchnic mesoderm cells to distinct branchiomeric muscles reveals significant heterogeneity in head muscle development, Development, vol.135, issue.4, pp.647-657, 2008.
DOI : 10.1242/dev.007989

H. Neuhaus, V. Rosen, and R. Thies, Heart specific expression of mouse BMP-10 a novel member of the TGF-?? superfamily, Mechanisms of Development, vol.80, issue.2, pp.181-184, 1999.
DOI : 10.1016/S0925-4773(98)00221-4

D. Noden and P. Francis-west, The differentiation and morphogenesis of craniofacial muscles, Developmental Dynamics, vol.86, issue.5, pp.1194-1218, 2006.
DOI : 10.1002/aja.1002010209

T. Peng, Y. Tian, C. Boogerd, M. Lu, R. Kadzik et al., Coordination of heart and lung co-development by a multipotent cardiopulmonary progenitor, Nature, vol.7, issue.7464, pp.589-592, 2013.
DOI : 10.1038/nprot.2011.441

C. Peshkovsky, R. Totong, and D. Yelon, Dependence of cardiac trabeculation on neuregulin signaling and blood flow in zebrafish, Developmental Dynamics, vol.109, issue.2, pp.446-456, 2011.
DOI : 10.1161/01.CIR.0000132478.60674.D0

L. Qian, Y. Huang, C. Spencer, A. Foley, V. Vedantham et al., In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes, Nature, vol.100, issue.7400, pp.593-598, 2012.
DOI : 10.1016/j.bpj.2011.03.060

T. Rasmussen, J. Kweon, M. Diekmann, F. Belema-bedada, Q. Song et al., ER71 directs mesodermal fate decisions during embryogenesis, Development, vol.138, issue.21, pp.4801-4812, 2011.
DOI : 10.1242/dev.070912

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3190388

K. Red-horse, H. Ueno, I. Weissman, and M. Krasnow, Coronary arteries form by developmental reprogramming of venous cells, Nature, vol.3, issue.7288, pp.549-553, 2010.
DOI : 10.1161/01.RES.73.3.559

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2924433

G. Rosenquist, Location and movements of cardiogenic cells in the chick embryo: The heart-forming portion of the primitive streak, Developmental Biology, vol.22, issue.3, pp.461-475, 1970.
DOI : 10.1016/0012-1606(70)90163-6

Y. Saga, S. Miyagawa-tomita, A. Takagi, S. Kitajima, J. Miyazaki et al., MesP1 is expressed in the heart precursor cells and required for the formation of a single heart tube, Development, vol.126, pp.3437-3447, 1999.

Y. Saga, S. Kitajima, and S. Miyagawa-tomita, Mesp1 Expression Is the Earliest Sign of Cardiovascular Development, Trends in Cardiovascular Medicine, vol.10, issue.8, pp.345-352, 2000.
DOI : 10.1016/S1050-1738(01)00069-X

I. Schulte, J. Schlueter, R. Abu-issa, T. Brand, and J. Manner, Morphological and molecular left???right asymmetries in the development of the proepicardium: A comparative analysis on mouse and chick embryos, Developmental Dynamics, vol.219, issue.3, pp.684-695, 2007.
DOI : 10.1016/S0300-8932(02)76758-4

D. Sedmera, M. Reckova, A. Dealmeida, S. Coppen, S. Kubalak et al., Spatiotemporal pattern of commitment to slowed proliferation in the embryonic mouse heart indicates progressive differentiation of the cardiac conduction system, The Anatomical Record, vol.88, issue.1, pp.773-777, 2003.
DOI : 10.1161/01.RES.82.6.629

D. Spater, M. Abramczuk, K. Buac, L. Zangi, M. Stachel et al., A HCN4+ cardiomyogenic progenitor derived from the first heart field and human pluripotent stem cells, Nature Cell Biology, vol.124, issue.9, pp.1098-1106, 2013.
DOI : 10.1177/15.10.580

E. Stanley, C. Biben, A. Elefanty, L. Barnett, F. Koentgen et al., Efficient Cre-mediated deletion in cardiac progenitor cells conferred by a 3 0 UTR-ires-Cre allele of the homeobox gene Nkx2-5, Int J Dev Biol, vol.46, pp.431-439, 2002.

D. Staudt, J. Liu, K. Thorn, N. Stuurman, M. Liebling et al., High-resolution imaging of cardiomyocyte behavior reveals two distinct steps in ventricular trabeculation, Development, vol.141, issue.3, pp.585-593, 2014.
DOI : 10.1242/dev.098632

F. Stennard, M. Costa, D. Elliott, S. Rankin, S. Haast et al., Cardiac T-box factor Tbx20 directly interacts with Nkx2-5, GATA4, and GATA5 in regulation of gene expression in the developing heart, Developmental Biology, vol.262, issue.2, pp.206-224, 2003.
DOI : 10.1016/S0012-1606(03)00385-3

H. Sucov, Y. Gu, S. Thomas, P. Li, and M. Pashmforoush, Epicardial Control of Myocardial Proliferation and Morphogenesis, Pediatric Cardiology, vol.454, issue.5, pp.617-625, 2009.
DOI : 10.1161/01.RES.78.3.349

Y. Sun, X. Liang, N. Najafi, M. Cass, L. Lin et al., Islet 1 is expressed in distinct cardiovascular lineages, including pacemaker and coronary vascular cells, Developmental Biology, vol.304, issue.1, pp.286-296, 2007.
DOI : 10.1016/j.ydbio.2006.12.048

P. Tam, M. Parameswaran, S. Kinder, and R. Weinberger, The allocation of epiblast cells to the embryonic heart and other mesodermal lineages: The role of ingression and tissue movement during gastrulation, Development, vol.124, pp.1631-1642, 1997.

M. Theveniau-ruissy, M. Dandonneau, K. Mesbah, O. Ghez, M. Mattei et al., The del22q11.2 Candidate Gene Tbx1 Controls Regional Outflow Tract Identity and Coronary Artery Patterning, Circulation Research, vol.103, issue.2, pp.142-148, 2008.
DOI : 10.1161/CIRCRESAHA.108.172189

L. Tirosh-finkel, H. Elhanany, A. Rinon, and E. Tzahor, Mesoderm progenitor cells of common origin contribute to the head musculature and the cardiac outflow tract, Development, vol.133, issue.10, pp.1943-1953, 2006.
DOI : 10.1242/dev.02365

E. Tzouanacou, A. Wegener, F. Wymeersch, V. Wilson, and J. Nicolas, Redefining the Progression of Lineage Segregations during Mammalian Embryogenesis by Clonal Analysis, Developmental Cell, vol.17, issue.3, pp.365-376, 2009.
DOI : 10.1016/j.devcel.2009.08.002

R. Van-praagh, The First Stella Van Praagh Memorial Lecture: The History and Anatomy of Tetralogy of Fallot, Seminars in Thoracic and Cardiovascular Surgery: Pediatric Cardiac Surgery Annual, vol.12, issue.1, pp.19-38, 2009.
DOI : 10.1053/j.pcsu.2009.01.004

B. Van-wijk, G. Van-den-berg, R. Abu-issa, P. Barnett, S. Van-der-velden et al., Epicardium and Myocardium Separate From a Common Precursor Pool by Crosstalk Between Bone Morphogenetic Protein??? and Fibroblast Growth Factor???Signaling Pathways, Circulation Research, vol.105, issue.5, pp.431-441, 2009.
DOI : 10.1161/CIRCRESAHA.109.203083

M. Verzi, D. Mcculley, D. Val, S. Dodou, E. Black et al., The right ventricle, outflow tract, and ventricular septum comprise a restricted expression domain within the secondary/anterior heart field, Developmental Biology, vol.287, issue.1, pp.134-145, 2005.
DOI : 10.1016/j.ydbio.2005.08.041

S. Viragh and C. Challice, The origin of the epicardium and the embryonic myocardial circulation in the mouse, The Anatomical Record, vol.129, issue.1, pp.157-168, 1981.
DOI : 10.1002/ar.1092010117

K. Waldo, M. Hutson, C. Ward, M. Zdanowicz, H. Stadt et al., Secondary heart field contributes myocardium and smooth muscle to the arterial pole of the developing heart, Developmental Biology, vol.281, issue.1, pp.78-90, 2005.
DOI : 10.1016/j.ydbio.2005.02.012

C. Ward, H. Stadt, M. Hutson, and M. Kirby, Ablation of the secondary heart field leads to tetralogy of Fallot and pulmonary atresia, Developmental Biology, vol.284, issue.1, pp.72-83, 2005.
DOI : 10.1016/j.ydbio.2005.05.003

Y. Watanabe, S. Miyagawa-tomita, S. Vincent, R. Kelly, A. Moon et al., Role of Mesodermal FGF8 and FGF10 Overlaps in the Development of the Arterial Pole of the Heart and Pharyngeal Arch Arteries, Circulation Research, vol.106, issue.3, pp.495-503, 2010.
DOI : 10.1161/CIRCRESAHA.109.201665

URL : https://hal.archives-ouvertes.fr/hal-00567071

Y. Wei and T. Mikawa, Fate diversity of primitive streak cells during heart field formation in ovo, Developmental Dynamics, vol.207, issue.4, pp.505-513, 2000.
DOI : 10.1002/(SICI)1097-0177(199612)207:4<429::AID-AJA7>3.0.CO;2-J

E. Winter and A. Gittenberger-de-groot, Cardiovascular development: towards biomedical applicability, Cellular and Molecular Life Sciences, vol.276, issue.6, pp.692-703, 2007.
DOI : 10.1161/01.RES.71.1.40

B. Wu, Z. Zhang, W. Lui, X. Chen, Y. Wang et al., Endocardial Cells Form the Coronary Arteries by Angiogenesis through Myocardial-Endocardial VEGF Signaling, Cell, vol.151, issue.5, pp.1083-1096, 2012.
DOI : 10.1016/j.cell.2012.10.023

H. Xu, M. Morishima, J. Wylie, R. Schwartz, B. Bruneau et al., Tbx1 has a dual role in the morphogenesis of the cardiac outflow tract, Development, vol.131, issue.13, pp.3217-3227, 2004.
DOI : 10.1242/dev.01174

S. Zaffran, R. Kelly, S. Meilhac, M. Buckingham, and N. Brown, Right Ventricular Myocardium Derives From the Anterior Heart Field, Circulation Research, vol.95, issue.3, pp.261-268, 2004.
DOI : 10.1161/01.RES.0000136815.73623.BE

URL : https://hal.archives-ouvertes.fr/hal-00311198

Z. Zhang, F. Cerrato, H. Xu, F. Vitelli, M. Morishima et al., Tbx1 expression in pharyngeal epithelia is necessary for pharyngeal arch artery development, Development, vol.132, issue.23, pp.5307-5315, 2005.
DOI : 10.1242/dev.02086

B. Zhou, Q. Ma, S. Rajagopal, S. Wu, I. Domian et al., Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart, Nature, vol.208, issue.7200, pp.109-113, 2008.
DOI : 10.1161/01.RES.82.10.1043

B. Zhou, A. Von-gise, Q. Ma, J. Rivera-feliciano, and W. Pu, Nkx2-5- and Isl1-expressing cardiac progenitors contribute to proepicardium, Biochemical and Biophysical Research Communications, vol.375, issue.3, pp.450-453, 2008.
DOI : 10.1016/j.bbrc.2008.08.044

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2610421