P. Fernandez, B. Saint-joanis, N. Barilone, M. Jackson, B. Gicquel et al., The Ser/Thr Protein Kinase PknB Is Essential for Sustaining Mycobacterial Growth, Journal of Bacteriology, vol.188, issue.22, pp.7778-84, 2006.
DOI : 10.1128/JB.00963-06

J. Chao, D. Wong, X. Zheng, V. Poirier, H. Bach et al., Protein kinase and phosphatase signaling in Mycobacterium tuberculosis physiology and pathogenesis, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1804, issue.3, pp.620-627, 2009.
DOI : 10.1016/j.bbapap.2009.09.008

D. Sherman and C. Grundner, Agents of change?concepts in Mycobacterium tuberculosis Ser/Thr/Tyr phosphosignalling. Molecular microbiology, pp.231-272, 2014.

J. Dworkin and . Ser, Thr phosphorylation as a regulatory mechanism in bacteria Current opinion in microbiology, pp.47-52, 2015.

J. Gallant, A. Viljoen, P. Van-helden, and I. Wiid, Glutamate Dehydrogenase Is Required by Mycobacterium bovis BCG for Resistance to Cellular Stress, PLOS ONE, vol.275, issue.175, p.26824899, 2016.
DOI : 10.1371/journal.pone.0147706.s005

URL : http://doi.org/10.1371/journal.pone.0147706

C. Maksymiuk, A. Balakrishnan, R. Bryk, K. Rhee, and C. Nathan, against glutamate anaplerosis and nitroxidative stress, Proceedings of the National Academy of Sciences, vol.234, issue.4, pp.5834-5877, 2015.
DOI : 10.1073/pnas.1219375110

URL : http://www.pnas.org/content/112/43/E5834.full.pdf

A. Viljoen, C. Kirsten, B. Baker, P. Van-helden, and I. Wiid, The Role of Glutamine Oxoglutarate Aminotransferase and Glutamate Dehydrogenase in Nitrogen Metabolism in Mycobacterium bovis BCG, PLoS ONE, vol.17, issue.12, pp.84452-24367660, 2013.
DOI : 10.1371/journal.pone.0084452.s005

T. Wagner, M. Bellinzoni, A. Wehenkel, O. Hare, H. Alzari et al., Functional Plasticity and Allosteric Regulation of ??-Ketoglutarate Decarboxylase in Central Mycobacterial Metabolism, Chemistry & Biology, vol.18, issue.8, pp.1011-2008, 2011.
DOI : 10.1016/j.chembiol.2011.06.004

J. Leigh and J. Dodsworth, Nitrogen regulation in bacteria and archaea. Annual review of microbiology, pp.349-77, 2007.
DOI : 10.1146/annurev.micro.61.080706.093409

T. Primm, S. Andersen, V. Mizrahi, D. Avarbock, H. Rubin et al., The Stringent Response of Mycobacterium tuberculosis Is Required for Long-Term Survival, Journal of Bacteriology, vol.182, issue.17, pp.4889-98, 2000.
DOI : 10.1128/JB.182.17.4889-4898.2000

G. Cook, M. Berney, S. Gebhard, M. Heinemann, R. Cox et al., Physiology of mycobacteria Advances in microbial physiology, Epub, vol.55, issue.09, pp.81-182, 2009.

T. Nott, G. Kelly, L. Stach, J. Li, S. Westcott et al., An Intramolecular Switch Regulates Phosphoindependent FHA Domain Interactions in Mycobacterium tuberculosis, Science Signaling, vol.2, issue.63, p.12, 2009.
DOI : 10.1126/scisignal.2000212

C. Schultz, A. Niebisch, A. Schwaiger, U. Viets, S. Metzger et al., Genetic and biochemical analysis of the serine/threonine protein kinases PknA, PknB, PknG and PknL of Corynebacterium glutamicum: evidence for non-essentiality and for phosphorylation of OdhI and FtsZ by multiple kinases, Molecular microbiology, vol.7410, issue.301, pp.724-765, 2009.

C. Barry, Mycobacterium smegmatis: an absurd model for tuberculosis?, Trends in Microbiology, vol.9, issue.10, pp.472-475, 2001.
DOI : 10.1016/S0966-842X(01)02169-2

J. Reyrat and D. Kahn, Mycobacterium smegmatis: an absurd model for tuberculosis? Trends in microbiology, pp.472-413, 2001.

J. Tyagi and D. Sharma, Mycobacterium smegmatis and tuberculosis. Trends in microbiology, Epub, vol.10, issue.2, pp.68-906, 2002.

A. Villarino, R. Duran, A. Wehenkel, P. Fernandez, P. England et al., Proteomic identification of M. tuberculosis protein kinase substrates: PknB recruits GarA, a FHA domain-containing protein, through activation loop-mediated interactions, Journal of molecular biology, vol.35028, issue.506, pp.953-63, 2005.

C. Schultz, A. Niebisch, L. Gebel, and M. Bott, Glutamate production by Corynebacterium glutamicum: dependence on the oxoglutarate dehydrogenase inhibitor protein OdhI and protein kinase PknG, Applied Microbiology and Biotechnology, vol.280, issue.3, pp.691-700, 2007.
DOI : 10.1271/bbb1961.29.351

M. Lisa, M. Gil, G. Andre-leroux, N. Barilone, R. Duran et al., Molecular Basis of the Activity and the Regulation of the Eukaryotic-like S/T Protein Kinase PknG from Mycobacterium tuberculosis, Structure, vol.23, issue.6, pp.1039-1087, 2015.
DOI : 10.1016/j.str.2015.04.001

N. Scherr, S. Honnappa, G. Kunz, P. Mueller, R. Jayachandran et al., Structural basis for the specific inhibition of protein kinase G, a virulence factor of Mycobacterium tuberculosis, Proceedings of the National Academy of Sciences, vol.288, issue.5471, pp.12151-12157, 2007.
DOI : 10.1126/science.288.5471.1647

D. Tiwari, R. Singh, K. Goswami, S. Verma, B. Prakash et al., Key residues in Mycobacterium tuberculosis protein kinase G play a role in regulating kinase activity and survival in the host, J Biol Chem. Epub, vol.28430, issue.4007, pp.27467-79, 2009.

M. Gil, M. Grana, F. Schopfer, T. Wagner, A. Denicola et al., Inhibition of Mycobacterium tuberculosis PknG by non-catalytic rubredoxin domain specific modification: reaction of an electrophilic nitro-fatty acid with the Fe-S center. Free radical biology & medicine, pp.150-61, 2013.

A. Baughn, S. Garforth, C. Vilcheze, W. Jacobs, and . Jr, An anaerobic-type alpha-ketoglutarate ferredoxin oxidoreductase completes the oxidative tricarboxylic acid cycle of Mycobacterium tuberculosis, PLoS pathogens, vol.526, issue.1111, 2009.

S. Ehrt, K. Rhee, and D. Schnappinger, Mycobacterial genes essential for the pathogen's survival in the host, Immunological Reviews, vol.18, issue.1, pp.319-345, 2015.
DOI : 10.1016/j.chembiol.2011.06.004

D. Smith, T. Parish, N. Stoker, and G. Bancroft, Characterization of Auxotrophic Mutants of Mycobacterium tuberculosis and Their Potential as Vaccine Candidates, Infection and Immunity, vol.69, issue.2, pp.1142-50, 2001.
DOI : 10.1128/IAI.69.2.1442-1150.2001

Y. Zhang, M. Reddy, T. Ioerger, A. Rothchild, V. Dartois et al., Tryptophan Biosynthesis Protects Mycobacteria from CD4 T-Cell-Mediated Killing, Cell, vol.155, issue.6, pp.1296-308, 2013.
DOI : 10.1016/j.cell.2013.10.045

URL : http://doi.org/10.1016/j.cell.2013.10.045

A. Belanger and G. Hatfull, Exponential-phase glycogen recycling is essential for growth of Mycobacterium smegmatis, J Bacteriol. Epub, vol.181, issue.211105, pp.6670-6678, 1999.

K. Weldingh, I. Rosenkrands, S. Jacobsen, P. Rasmussen, M. Elhay et al., Two-dimensional electrophoresis for analysis of Mycobacterium tuberculosis culture filtrate and purification and characterization of six novel proteins, Infection and immunity, vol.6623, issue.807, pp.3492-500, 1998.

J. Leiba, K. Syson, G. Baronian, I. Zanella-cleon, R. Kalscheuer et al., Mycobacterium tuberculosis maltosyltransferase GlgE, a genetically validated antituberculosis target, is negatively regulated by Ser/Thr phosphorylation, J Biol Chem, vol.28824, issue.23, pp.16546-56, 2013.
DOI : 10.1074/jbc.m112.398503

URL : http://www.jbc.org/content/288/23/16546.full.pdf

J. Kim, H. Fukuda, T. Hirasawa, K. Nagahisa, K. Nagai et al., Requirement of de novo synthesis of the OdhI protein in penicillin-induced glutamate production by Corynebacterium glutamicum, Applied Microbiology and Biotechnology, vol.153, issue.3, pp.911-931, 2009.
DOI : 10.1271/bbb1961.29.351

P. England, A. Wehenkel, S. Martins, S. Hoos, G. Andre-leroux et al., The FHA-containing protein GarA acts as a phosphorylation-dependent molecular switch in mycobacterial signaling, FEBS Letters, vol.7, issue.2, pp.301-308, 2008.
DOI : 10.1074/mcp.M700311-MCP200

R. Lyon, W. Hall, and C. Costas-martinez, Effect of L-asparagine on growth of Mycobacterium tuberculosis and on utilization of other amino acids, J Bacteriol. Epub, vol.117, issue.1, pp.151-157, 1974.

C. Pashley and T. Parish, Efficient switching of mycobacteriophage L5-based integrating plasmids in Mycobacterium tuberculosis, FEMS microbiology letters. Epub, vol.22912, issue.2, pp.211-216, 2003.

D. Bottai, L. Majlessi, R. Simeone, W. Frigui, C. Laurent et al., ESAT-6 secretion-independent impact of ESX-1 genes espF and espG1 on virulence of Mycobacterium tuberculosis. The Journal of infectious diseases, pp.1155-64, 2011.

T. Pham, D. Jacobs-sera, M. Pedulla, R. Hendrix, and G. Hatfull, Comparative genomic analysis of mycobacteriophage Tweety: evolutionary insights and construction of compatible site-specific integration vectors for mycobacteria, Microbiology, vol.153, issue.8, pp.2711-2734, 2007.
DOI : 10.1099/mic.0.2007/008904-0

R. Manganelli, M. Voskuil, G. Schoolnik, and I. Smith, The Mycobacterium tuberculosis ECF sigma factor ??E: role in global gene expression and survival in macrophages???, Molecular Microbiology, vol.95, issue.2, pp.423-460, 2001.
DOI : 10.1128/jb.179.9.2922-2929.1997

A. Cascioferro, G. Delogu, M. Colone, M. Sali, A. Stringaro et al., PE is a functional domain responsible for protein translocation and localization on mycobacterial cell wall, Molecular Microbiology, vol.168, issue.0, pp.1536-1583, 2007.
DOI : 10.1016/j.febslet.2006.01.042

C. Stover, V. De-la-cruz, T. Fuerst, J. Burlein, L. Benson et al., New use of BCG for recombinant vaccines, Nature, vol.351, issue.6326, pp.456-60, 1991.
DOI : 10.1038/351456a0

E. Kinoshita and E. Kinoshita-kikuta, Improved Phos-tag SDS-PAGE under neutral pH conditions for advanced protein phosphorylation profiling, PROTEOMICS, vol.30, issue.2, pp.319-342, 2011.
DOI : 10.1042/bj1040742