M. R. Ehrenstein and C. A. Notley, The importance of natural IgM: scavenger, protector and regulator, Nature Reviews Immunology, vol.4, issue.11, pp.778-786, 2010.
DOI : 10.4049/jimmunol.172.2.1191

E. A. Padlan, Anatomy of the antibody molecule, Molecular Immunology, vol.31, issue.3, pp.169-217, 1994.
DOI : 10.1016/0161-5890(94)90001-9

D. R. Burton and J. M. Woof, Human Antibody Effector Function, Adv. Immunol, vol.51, pp.1-84, 1992.
DOI : 10.1016/S0065-2776(08)60486-1

R. M. Zinkernagel, Neutralizing antiviral antibody responses, Adv. Immunol, vol.79, pp.1-53, 2001.
DOI : 10.1016/S0065-2776(01)79001-3

N. S. Merle, S. E. Church, V. Fremeaux-bacchi, and L. Roumenina, Complement System Part I ???????? Molecular Mechanisms of Activation and Regulation, Frontiers in Immunology, vol.703, issue.181, p.262, 2015.
DOI : 10.1007/978-1-4419-5635-4_10

T. Yang, O. K. Baryshnikova, H. Mao, M. A. Holden, and P. S. Cremer, Investigations of Bivalent Antibody Binding on Fluid-Supported Phospholipid Membranes:?? The Effect of Hapten Density, Journal of the American Chemical Society, vol.125, issue.16, pp.4779-4784, 2003.
DOI : 10.1021/ja029469f

C. De-michele, P. De-los-rios, G. Foffi, and F. Piazza, Simulation and Theory of Antibody Binding to Crowded Antigen-Covered Surfaces, PLOS Computational Biology, vol.135, issue.13, p.1004752, 2016.
DOI : 10.1371/journal.pcbi.1004752.t001

URL : https://hal.archives-ouvertes.fr/hal-01406916

J. S. Klein, Examination of the contributions of size and avidity to the neutralization mechanisms of the anti-HIV antibodies b12 and 4E10, Proc. the Natl. Acad. Sci. USA, pp.7385-7390, 2009.
DOI : 10.1126/science.1061692

J. S. Klein and P. J. Bjorkman, Few and Far Between: How HIV May Be Evading Antibody Avidity, PLoS Pathogens, vol.67, issue.10, p.1000908, 2010.
DOI : 10.1371/journal.ppat.1000908.g004

URL : https://doi.org/10.1371/journal.ppat.1000908

J. Preiner, IgGs are made for walking on bacterial and viral surfaces, Nature Communications, vol.25, p.4394, 2014.
DOI : 10.1002/jcc.20084

C. A. Diebolder, Complement Is Activated by IgG Hexamers Assembled at the Cell Surface, Science, vol.19, issue.8, pp.1260-1263, 2014.
DOI : 10.1093/emboj/19.8.1755

R. N. De-jong, A Novel Platform for the Potentiation of Therapeutic Antibodies Based on Antigen-Dependent Formation of IgG Hexamers at the Cell Surface, PLOS Biology, vol.134, issue.42, p.1002344, 2016.
DOI : 10.1371/journal.pbio.1002344.s014

E. M. Cook, Antibodies That Efficiently Form Hexamers upon Antigen Binding Can Induce Complement-Dependent Cytotoxicity under Complement-Limiting Conditions, The Journal of Immunology, vol.197, issue.5, pp.1762-1775, 2016.
DOI : 10.4049/jimmunol.1600648

P. Schuck, USE OF SURFACE PLASMON RESONANCE TO PROBE THE EQUILIBRIUM AND DYNAMIC ASPECTS OF INTERACTIONS BETWEEN BIOLOGICAL MACROMOLECULES, Annual Review of Biophysics and Biomolecular Structure, vol.26, issue.1, pp.541-566, 1997.
DOI : 10.1146/annurev.biophys.26.1.541

D. G. Myszka, X. He, M. Dembo, T. A. Morton, and B. Goldstein, Extending the Range of Rate Constants Available from BIACORE: Interpreting Mass Transport-Influenced Binding Data, Biophysical Journal, vol.75, issue.2, pp.583-594, 1998.
DOI : 10.1016/S0006-3495(98)77549-6

P. Schuck, L. F. Boyd, and P. S. Andersen, Measuring protein interactions by optical biosensors, Curr. Protocols Cell Biol. Unit, vol.17, p.16, 2004.

J. D. Chodera and D. L. Mobley, Entropy-Enthalpy Compensation: Role and Ramifications in Biomolecular Ligand Recognition and Design, Annual Review of Biophysics, vol.42, issue.1, pp.121-142, 2013.
DOI : 10.1146/annurev-biophys-083012-130318

J. Janin, Principles of protein-protein recognition from structure to thermodynamics, Biochimie, vol.77, issue.7-8, pp.497-505, 1995.
DOI : 10.1016/0300-9084(96)88166-1

W. Stites, Protein???Protein Interactions:?? Interface Structure, Binding Thermodynamics, and Mutational Analysis, Chemical Reviews, vol.97, issue.5, pp.1233-1250, 1997.
DOI : 10.1021/cr960387h

L. M. Amzel, Calculation of entropy changes in biological processes: Folding, binding, and oligomerization, Methods Enzymol, vol.323, pp.167-177, 2000.
DOI : 10.1016/S0076-6879(00)23366-1

J. Chaires, Calorimetry and Thermodynamics in Drug Design, Annual Review of Biophysics, vol.37, issue.1, pp.135-151, 2008.
DOI : 10.1146/annurev.biophys.36.040306.132812

H. Wu, Ultra-potent Antibodies Against Respiratory Syncytial Virus: Effects of Binding Kinetics and Binding Valence on Viral Neutralization, Journal of Molecular Biology, vol.350, issue.1, pp.126-144, 2005.
DOI : 10.1016/j.jmb.2005.04.049

R. P. Galimidi, Intra-Spike Crosslinking Overcomes Antibody Evasion by HIV-1, Cell, vol.160, issue.3, pp.433-446, 2015.
DOI : 10.1016/j.cell.2015.01.016

URL : https://doi.org/10.1016/j.cell.2015.01.016

S. Ido, Immunoactive two-dimensional self-assembly of monoclonal antibodies in aqueous solution revealed by atomic force microscopy, Nature Materials, vol.78, issue.3, pp.264-270, 2014.
DOI : 10.1063/1.2432410

P. Zhu, Distribution and three-dimensional structure of AIDS virus envelope spikes, Nature, vol.77, issue.7095, pp.847-852, 2006.
DOI : 10.1007/978-3-662-05783-4_6

H. Mouquet, Polyreactivity increases the apparent affinity of anti-HIV antibodies by heteroligation, Nature, vol.35, issue.7315, pp.591-595, 2010.
DOI : 10.1038/nature09385

H. Mouquet, Memory B Cell Antibodies to HIV-1 gp140 Cloned from Individuals Infected with Clade A and B Viruses, PLoS ONE, vol.201, issue.9, p.24078, 2011.
DOI : 10.1371/journal.pone.0024078.s007

J. F. Scheid, Broad diversity of neutralizing antibodies isolated from memory B cells in HIV-infected individuals, Nature, vol.301, issue.7238, pp.636-640, 2009.
DOI : 10.1038/nature07930

H. X. Liao, Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus, Nature, vol.372, issue.7446, pp.469-476, 2013.
DOI : 10.1016/j.jmb.2007.05.022

H. Mouquet, Complex-type N-glycan recognition by potent broadly neutralizing HIV antibodies, Proc. Natl. Acad. Sci. USA, pp.3268-3277, 2012.
DOI : 10.1126/science.1178746

V. Manivel, N. C. Sahoo, D. M. Salunke, and K. Rao, Maturation of an Antibody Response Is Governed by Modulations in Flexibility of the Antigen-Combining Site, Immunity, vol.13, issue.5, pp.611-620, 2000.
DOI : 10.1016/S1074-7613(00)00061-3

J. D. Dimitrov, Ferrous Ions and Reactive Oxygen Species Increase Antigen-binding and Anti-inflammatory Activities of Immunoglobulin G, Journal of Biological Chemistry, vol.83, issue.1, pp.439-446, 2006.
DOI : 10.1056/NEJMra993360