G. Favia, Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector, Proceedings of the National Academy of Sciences, vol.70, issue.5, pp.9047-9051, 2007.
DOI : 10.1128/AEM.70.5.2596-2602.2004

M. Coetzee, Anopheles coluzzii and Anopheles amharicus, new members of the Anopheles gambiae complex, Zootaxa, vol.3619, pp.246-274, 2013.

S. M. Rottschaefer, Exceptional Diversity, Maintenance of Polymorphism, and Recent Directional Selection on the APL1 Malaria Resistance Genes of Anopheles gambiae, PLoS Biology, vol.5, issue.3, 2011.
DOI : 10.1371/journal.pbio.1000600.s006

B. J. White, Adaptive divergence between incipient species of Anopheles gambiae increases resistance to Plasmodium, Proceedings of the National Academy of Sciences, vol.6, issue.10, pp.244-249, 2011.
DOI : 10.1371/journal.pbio.0060251

C. Mitri, An Evolution-Based Screen for Genetic Differentiation between Anopheles Sister Taxa Enriches for Detection of Functional Immune Factors, PLoS pathogens, vol.11, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01247471

M. Buck, Bacterial associations reveal spatial population dynamics in Anopheles gambiae mosquitoes, Scientific Reports, vol.30, issue.1, pp.10-1038, 2016.
DOI : 10.1093/molbev/mst197

N. Segata, The reproductive tracts of two malaria vectors are populated by a core microbiome and by gender-and swarmenriched microbial biomarkers, Sci Rep, vol.6, pp.10-1038, 2016.

J. Akorli, Seasonality and Locality Affect the Diversity of Anopheles gambiae and Anopheles coluzzii Midgut Microbiota from Ghana, PLOS ONE, vol.208, issue.6, 2016.
DOI : 10.1371/journal.pone.0157529.s011

C. J. Ngwa, 16S rRNA Gene-Based Identification of <I>Elizabethkingia meningoseptica</I> (Flavobacteriales: Flavobacteriaceae) as a Dominant Midgut Bacterium of the Asian Malaria Vector <I>Anopheles stephensi</I> (Dipteria: Culicidae) With Antimicrobial Activities, Journal of Medical Entomology, vol.50, issue.2, pp.404-414, 2013.
DOI : 10.1603/ME12180

J. Osei-poku, C. M. Mbogo, W. J. Palmer, and F. M. Jiggins, Deep sequencing reveals extensive variation in the gut microbiota of wild mosquitoes from Kenya, Molecular Ecology, vol.11, issue.20, pp.5138-5150, 2012.
DOI : 10.1371/journal.pone.0024767

Y. Wang, T. M. Gilbreath, P. Kukutla, G. Yan, and J. Xu, Dynamic Gut Microbiome across Life History of the Malaria Mosquito Anopheles gambiae in Kenya, PLoS ONE, vol.57, issue.9, 2011.
DOI : 10.1371/journal.pone.0024767.s012

A. Rani, A. Sharma, R. Rajagopal, T. Adak, and R. K. Bhatnagar, Bacterial diversity analysis of larvae and adult midgut microflora using culture-dependent and culture-independent methods in lab-reared and field-collected Anopheles stephensi-an Asian malarial vector, BMC Microbiol, vol.9, issue.96, pp.10-1186, 2009.

F. Baldini, Evidence of natural Wolbachia infections in field populations of Anopheles gambiae, Nature Communications, vol.5, issue.3985, p.4985, 2014.
DOI : 10.1038/ncomms3304

T. G. Andreadis, MICROSPORIDIAN PARASITES OF MOSQUITOES, Journal of the American Mosquito Control Association, vol.23, issue.sp2, pp.3-29, 2007.
DOI : 10.2987/8756-971X(2007)23[3:MPOM]2.0.CO;2

T. G. Andreadis, A. V. Simakova, C. R. Vossbrinck, J. J. Shepard, and Y. A. Yurchenko, Ultrastructural characterization and comparative phylogenetic analysis of new microsporidia from Siberian mosquitoes: Evidence for coevolution and host switching, Journal of Invertebrate Pathology, vol.109, issue.1, pp.59-75, 2012.
DOI : 10.1016/j.jip.2011.09.011

J. C. Beier, D. D. Chadee, A. Charran, N. M. Comiskey, and D. M. Wesson, Country-wide prevalence of Ascogregarina culicis (apicomplexa: lecudinidae), a protozoan parasite of Aedes aegypti in Trinidad, West Indies, Journal of the American Mosquito Control Association, vol.11, pp.419-423, 1995.

W. J. Chen, C. Y. Chow, and S. T. Wu, Ultrastructure of Infection, Development and Gametocyst Formation of Ascogregarina taiwanensis (Apicomplexa: Lecudinidae) in Its Mosquito Host, Aedes albopictus (Diptera: Culicidae), The Journal of Eukaryotic Microbiology, vol.35, issue.2, pp.101-108, 1997.
DOI : 10.2307/3281200

P. N. Ganapati and P. Tate, On the gregarine Lankesteria culicis (Ross), 1898, from the mosquito A??des (Finlaya) geniculatus (Olivier), Parasitology, vol.22, issue.3-4, pp.291-295, 1949.
DOI : 10.1017/S0031182000083864

J. J. Garcia, T. Fukuda, J. J. Becnel, and . Seasonality, prevalence and pathogenicity of the gregarine Ascogregarina taiwanensis (Apicomplexa: Lecudinidae) in mosquitoes from Florida, Journal of the American Mosquito Control Association, vol.10, pp.413-418, 1994.

M. E. Morales, DIFFERENTIAL IDENTIFICATION OF ASCOGREGARINA SPECIES (APICOMPLEXA: LECUDINIDAE) IN AEDES AEGYPTI AND AEDES ALBOPICTUS (DIPTERA: CULICIDAE) BY POLYMERASE CHAIN REACTION, Journal of Parasitology, vol.91, issue.6, pp.1352-1357, 2005.
DOI : 10.1645/GE-442R.1

P. H. Van-thiel, Trematode, Gregarine and Fungus Parasites of Anopheles Mosquitoes, The Journal of Parasitology, vol.40, issue.3, pp.271-279, 1954.
DOI : 10.2307/3273738

I. Ricci, Different mosquito species host Wickerhamomyces anomalus (Pichia anomala): perspectives on vector-borne diseases symbiotic control, Antonie van Leeuwenhoek, vol.52, issue.1, pp.43-5010, 2011.
DOI : 10.3354/dao01943

D. A. Maslov, J. Votypka, V. Yurchenko, and J. Lukes, Diversity and phylogeny of insect trypanosomatids: all that is hidden shall be revealed, Trends in Parasitology, vol.29, issue.1, pp.43-52, 2013.
DOI : 10.1016/j.pt.2012.11.001

K. Diarra and B. Toguebaye, Etude d'une infection microsporidienne naturelle chez Anopheles gambiae Giles, moustique vecteur du paludisme au Sénégal, p.29, 1990.

J. Gibson, Simultaneous assessment of the macrobiome and microbiome in a bulk sample of tropical arthropods through DNA metasystematics, Proceedings of the National Academy of Sciences, vol.21, issue.9, pp.8007-801210, 2014.
DOI : 10.1101/gr.120618.111

Y. Dong, F. Manfredini, and G. Dimopoulos, Implication of the Mosquito Midgut Microbiota in the Defense against Malaria Parasites, PLoS Pathogens, vol.52, issue.5, 2009.
DOI : 10.1371/journal.ppat.1000423.s008

M. Gendrin, Antibiotics in ingested human blood affect the mosquito microbiota and capacity to transmit malaria, Nature Communications, vol.36, issue.5921, pp.10-1038, 2015.
DOI : 10.1007/BF01960142

C. M. Cirimotich, Natural Microbe-Mediated Refractoriness to Plasmodium Infection in Anopheles gambiae, Science, vol.45, issue.1, pp.855-85810, 2011.
DOI : 10.1603/0022-2585(2008)45[172:SRGSFB]2.0.CO;2

A. C. Bahia, blocking activity, Environmental Microbiology, vol.4, issue.9, pp.2980-299410, 2014.
DOI : 10.1371/journal.ppat.1000098

A. Boissiere, Midgut Microbiota of the Malaria Mosquito Vector Anopheles gambiae and Interactions with Plasmodium falciparum Infection, PLoS Pathogens, vol.1, issue.5, 2012.
DOI : 10.1371/journal.ppat.1002742.s005

URL : https://hal.archives-ouvertes.fr/hal-01546176

A. Cappelli, A Wickerhamomyces anomalus Killer Strain in the Malaria Vector Anopheles stephensi, PLoS ONE, vol.10, issue.5, p.95988, 2014.
DOI : 10.1371/journal.pone.0095988.s009

M. Valzano, A yeast strain associated to Anopheles mosquitoes produces a toxin able to kill malaria parasites, Malaria Journal, vol.20, issue.1, pp.10-1186, 2016.
DOI : 10.1094/MPMI-20-4-0371

I. Bargielowski and J. C. Koella, A Possible Mechanism for the Suppression of Plasmodium berghei Development in the Mosquito Anopheles gambiae by the Microsporidian Vavraia culicis, PLoS ONE, vol.18, issue.6, p.4676, 2009.
DOI : 10.1371/journal.pone.0004676.g003

D. T. Moury, Role of Gregarine Parasite Ascogregarina culicis (Apicomplexa: Lecudinidae) in the Maintenance of Chikungunya Virus in Vector Mosquito, The Journal of Eukaryotic Microbiology, vol.47, issue.5, pp.379-382, 2003.
DOI : 10.1099/0022-1317-81-2-471

H. Vestheim and S. N. Jarman, Blocking primers to enhance PCR amplification of rare sequences in mixed samples ??? a case study on prey DNA in Antarctic krill stomachs, Frontiers in Zoology, vol.5, issue.1, pp.10-1186, 2008.
DOI : 10.1186/1742-9994-5-12

D. S. Lundberg, S. Yourstone, P. Mieczkowski, C. D. Jones, and J. L. Dangl, Practical innovations for high-throughput amplicon sequencing, Nature Methods, vol.14, issue.10, pp.999-100210, 2013.
DOI : 10.1038/nmeth.f.303

D. M. Gohl, Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies, Nature Biotechnology, vol.17, issue.9, pp.942-949, 2016.
DOI : 10.1101/gr.849004

P. Lohan, K. M. Fleischer, R. C. Carney, K. J. Holzer, K. K. Ruiz et al., Amplicon-Based Pyrosequencing Reveals High Diversity of Protistan Parasites in Ships??? Ballast Water: Implications for Biogeography and Infectious Diseases, Microbial Ecology, vol.13, issue.8, pp.530-54210, 2016.
DOI : 10.1111/j.1461-0248.2010.01544.x

S. A. Berger, D. Krompass, and A. Stamatakis, Performance, Accuracy, and Web Server for Evolutionary Placement of Short Sequence Reads under Maximum Likelihood, Systematic Biology, vol.60, issue.3, pp.291-302, 2011.
DOI : 10.1093/sysbio/syr010

D. E. Neafsey, Mosquito genomics. Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes, Science, vol.347, issue.1258522, pp.10-1126, 2015.

S. L. Glockling, W. L. Marshall, and F. H. Gleason, Phylogenetic interpretations and ecological potentials of the Mesomycetozoea (Ichthyosporea), Fungal Ecology, vol.6, issue.4, pp.237-247, 2013.
DOI : 10.1016/j.funeco.2013.03.005

M. A. Ragan, A novel clade of protistan parasites near the animal-fungal divergence., Proceedings of the National Academy of Sciences, vol.93, issue.21, pp.11907-11912, 1996.
DOI : 10.1073/pnas.93.21.11907

J. Del-campo and I. Ruiz-trillo, Environmental Survey Meta-analysis Reveals Hidden Diversity among Unicellular Opisthokonts, Molecular Biology and Evolution, vol.30, issue.4, pp.802-80510, 2013.
DOI : 10.1093/molbev/mst006

S. C. Dawson and N. R. Pace, Novel kingdom-level eukaryotic diversity in anoxic environments, Proceedings of the National Academy of Sciences, vol.93, issue.21, pp.8324-8329062169599, 2002.
DOI : 10.1073/pnas.93.21.11907

P. Lopez-garcia, F. Rodriguez-valera, C. Pedros-alio, and D. Moreira, Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton, Nature, vol.13, issue.6820, pp.603-60710, 2001.
DOI : 10.1093/oxfordjournals.molbev.a025664

T. Terahara, Efficiency of Peptide Nucleic Acid-Directed PCR Clamping and Its Application in the Investigation of Natural Diets of the Japanese Eel Leptocephali, PLoS ONE, vol.172, issue.11, 2011.
DOI : 10.1371/journal.pone.0025715.t003

B. Lecroq, Ultra-deep sequencing of foraminiferal microbarcodes unveils hidden richness of early monothalamous lineages in deep-sea sediments, Proceedings of the National Academy of Sciences, vol.22, issue.21, pp.13177-1318210, 2011.
DOI : 10.1093/bioinformatics/btl446

URL : https://hal.archives-ouvertes.fr/hal-01577887

R. Logares, Diversity patterns and activity of uncultured marine heterotrophic flagellates unveiled with pyrosequencing, The ISME Journal, vol.52, issue.10, pp.1823-183336, 2012.
DOI : 10.1016/j.femsec.2004.10.006

URL : https://hal.archives-ouvertes.fr/hal-01258237

C. De-vargas, Eukaryotic plankton diversity in the sunlit ocean, Science, vol.48, issue.1, p.1261605, 2015.
DOI : 10.1111/j.1529-8817.2012.01150.x

S. M. Adl, The New Higher Level Classification of Eukaryotes with Emphasis on the Taxonomy of Protists, The Journal of Eukaryotic Microbiology, vol.49, issue.1, pp.399-451, 2005.
DOI : 10.1023/B:DOBS.0000010322.33294.9f

J. Pawlowski, CBOL Protist Working Group: Barcoding Eukaryotic Richness beyond the Animal, Plant, and Fungal Kingdoms, PLoS Biology, vol.279, issue.(3), 2012.
DOI : 10.1371/journal.pbio.1001419.s002

URL : https://hal.archives-ouvertes.fr/hal-01258240

J. Y. Chun, Dual priming oligonucleotide system for the multiplex detection of respiratory viruses and SNP genotyping of CYP2C19 gene, Nucleic Acids Research, vol.35, issue.6, p.51, 2007.
DOI : 10.1093/nar/gkm051

W. A. Walters, PrimerProspector: de novo design and taxonomic analysis of barcoded polymerase chain reaction primers, Bioinformatics, vol.27, issue.8, pp.1159-1161, 2011.
DOI : 10.1093/bioinformatics/btr087

C. Quast, The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic acids research 41, pp.590-59610, 2013.

P. Rice, I. Longden, and A. Bleasby, EMBOSS: the European Molecular Biology Open Software Suite. Trends in genetics, pp.276-277, 2000.
DOI : 10.1016/s0168-9525(00)02024-2

B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, Ultrafast and memory-efficient alignment of short DNA sequences to the human genome, Genome Biology, vol.10, issue.3, pp.10-1186, 2009.
DOI : 10.1186/gb-2009-10-3-r25

B. Coulibaly, Malaria vector populations across ecological zones in Guinea Conakry and Mali, West Africa, Malaria Journal, vol.53, issue.1, pp.10-1186, 2016.
DOI : 10.1175/JAMC-D-13-0270.1

A. P. Masella, A. K. Bartram, J. M. Truszkowski, D. G. Brown, and J. D. Neufeld, PANDAseq: paired-end assembler for illumina sequences, BMC Bioinformatics, vol.13, issue.1, pp.10-1186, 2012.
DOI : 10.1093/bioinformatics/btl158

URL : https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/1471-2105-13-31?site=bmcbioinformatics.biomedcentral.com

J. G. Caporaso, Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample, Proceedings of the National Academy of Sciences, vol.103, issue.3, pp.4516-452210, 2011.
DOI : 10.1073/pnas.0507535103

J. R. Rideout, Subsampled open-reference clustering creates consistent, comprehensive OTU definitions and scales to billions of sequences, PeerJ, vol.486, issue.7402, p.545, 2014.
DOI : 10.7717/peerj.545/supp-1

P. J. Mcmurdie and S. Holmes, phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data, PLoS ONE, vol.473, issue.4, 2013.
DOI : 10.1371/journal.pone.0061217.s002