A. Zumla, M. Raviglione, R. Hafner, and C. F. Von-reyn, Tuberculosis, New England Journal of Medicine, vol.368, issue.8, pp.745-755, 2013.
DOI : 10.1056/NEJMra1200894

URL : https://hal.archives-ouvertes.fr/pasteur-00835138

C. Aagaard, J. Dietrich, M. Doherty, and P. Andersen, TB vaccines: current status and future perspectives, Immunology and Cell Biology, vol.6, issue.4, pp.279-28614, 2009.
DOI : 10.7326/0003-4819-131-1-199907060-00007

O. Garra and A. , The immune response in tuberculosis Annual review of immunology 31, pp.475-52710, 2013.

D. A. Hokey and A. Ginsberg, The current state of tuberculosis vaccines, Human Vaccines & Immunotherapeutics, vol.142, issue.10, pp.2142-214610, 2013.
DOI : 10.1128/IAI.00592-09

S. H. Kaufmann, Novel tuberculosis vaccination strategies based on understanding the immune response, Journal of Internal Medicine, vol.2, issue.4 Suppl., pp.337-353, 2010.
DOI : 10.4049/jimmunol.181.11.7948

K. A. Sweeney, A recombinant Mycobacterium smegmatis induces potent bactericidal immunity against Mycobacterium tuberculosis, Nature Medicine, vol.13, issue.10, pp.1261-12682420, 2011.
DOI : 10.1038/35105052

U. D. Gupta, V. M. Katoch, and D. N. Mcmurray, Current status of TB vaccines, Vaccine, vol.25, issue.19, pp.3742-3751, 2007.
DOI : 10.1016/j.vaccine.2007.01.112

A. Arbues, Construction, characterization and preclinical evaluation of MTBVAC, the first live-attenuated M. tuberculosis-based vaccine to enter clinical trials, Vaccine, vol.31, issue.42, pp.4867-4873051, 2013.
DOI : 10.1016/j.vaccine.2013.07.051

D. B. Lowrie, Therapy of tuberculosis in mice by DNA vaccination, Nature, vol.400, issue.6741, pp.269-27110, 1999.
DOI : 10.1038/22326

C. C. Wang, B. Zhu, X. Fan, B. Gicquel, and Y. Zhang, Systems approach to tuberculosis vaccine development, Respirology, vol.92, issue.3, pp.412-420, 2013.
DOI : 10.1016/S1472-9792(12)70003-3

S. H. Kaufmann, Tuberculosis vaccine development at a divide Current opinion in pulmonary medicine, pp.294-30010, 2014.

F. Abebe and G. Bjune, infection, Clinical & Experimental Immunology, vol.61, issue.2, pp.235-243, 2009.
DOI : 10.4049/jimmunol.178.11.7222

G. Douce, Genetically detoxified mutants of heat-labile toxin from Escherichia coli are able to act as oral adjuvants, Infection and immunity, vol.67, pp.4400-4406, 1999.

M. Pizza, Mucosal vaccines: non toxic derivatives of LT and CT as mucosal adjuvants, Vaccine, vol.19, issue.17-19, pp.2534-254100553, 2001.
DOI : 10.1016/S0264-410X(00)00553-3

I. P. Nascimento, Recombinant Mycobacterium bovis BCG Expressing Pertussis Toxin Subunit S1 Induces Protection against an Intracerebral Challenge with Live Bordetella pertussis in Mice, Infection and Immunity, vol.68, issue.9, pp.4877-4883, 2000.
DOI : 10.1128/IAI.68.9.4877-4883.2000

E. N. Miyaji, Induction of Neutralizing Antibodies against Diphtheria Toxin by Priming with Recombinant Mycobacterium bovis BCG Expressing CRM197, a Mutant Diphtheria Toxin, Infection and Immunity, vol.69, issue.2, pp.869-874, 2001.
DOI : 10.1128/IAI.69.2.869-874.2001

R. P. Mazzantini, Adjuvant activity of Mycobacterium bovis BCG expressing CRM197 on the immune response induced by BCG expressing tetanus toxin fragment C, Vaccine, vol.22, issue.5-6, pp.740-746017, 2004.
DOI : 10.1016/j.vaccine.2003.08.017

A. P. Christ, Enhancement of Th1 lung immunity induced by recombinant Mycobacterium bovis Bacillus Calmette-Guerin attenuates airway allergic disease American journal of respiratory cell and molecular biology 43, pp.243-25210, 2010.

D. C. Chade, Immunomodulatory effects of recombinant BCG expressing pertussis toxin on TNF-alpha and IL-10 in a bladder cancer model Journal of experimental & clinical cancer research: CR 27, pp.10-1186, 2008.

P. M. Andrade, The therapeutic potential of recombinant BCG expressing the antigen S1PT in the intravesical treatment of bladder cancer, Urologic Oncology: Seminars and Original Investigations, vol.28, issue.5, pp.520-525017, 2008.
DOI : 10.1016/j.urolonc.2008.12.017

M. Marinaro, Mucosal delivery of the human immunodeficiency virus-1 Tat protein in mice elicits systemic neutralizing antibodies, cytotoxic T lymphocytes and mucosal IgA, Vaccine, vol.21, issue.25-26, pp.3972-398110, 2003.
DOI : 10.1016/S0264-410X(03)00295-0

J. Dietrich, Mucosal Administration of Ag85B-ESAT-6 Protects against Infection with Mycobacterium tuberculosis and Boosts Prior Bacillus Calmette-Guerin Immunity, The Journal of Immunology, vol.177, issue.9, pp.6353-6360, 2006.
DOI : 10.4049/jimmunol.177.9.6353

E. Badell, Protection against tuberculosis induced by oral prime with Mycobacterium bovis BCG and intranasal subunit boost based on the vaccine candidate Ag85B-ESAT-6 does not correlate with circulating IFN-?? producing T-cells, Vaccine, vol.27, issue.1, pp.28-37, 2009.
DOI : 10.1016/j.vaccine.2008.10.034

S. W. Barnett, Protection of macaques against vaginal SHIV challenge by systemic or mucosal and systemic vaccinations with HIV-envelope, AIDS, vol.22, issue.3, pp.339-34810, 2008.
DOI : 10.1097/QAD.0b013e3282f3ca57

D. J. Lewis, Transient Facial Nerve Paralysis (Bell's Palsy) following Intranasal Delivery of a Genetically Detoxified Mutant of Escherichia coli Heat Labile Toxin, PLoS ONE, vol.371, issue.9, p.6999, 2009.
DOI : 10.1371/journal.pone.0006999.g001

E. P. Amaral, Pulmonary Infection with Hypervirulent Mycobacteria Reveals a Crucial Role for the P2X7 Receptor in Aggressive Forms of Tuberculosis, PLoS Pathogens, vol.541, issue.7, 2014.
DOI : 10.1371/journal.ppat.1004188.s003

C. R. Zarate-blades, Evaluation of the overall IFN-?? and IL-17 pro-inflammatory responses after DNA therapy of tuberculosis, Human Vaccines & Immunotherapeutics, vol.174, issue.5, pp.1093-1103, 2013.
DOI : 10.1126/science.339.6116.130

N. Dhar, V. Rao, and A. K. Tyagi, Skewing of the Th1/Th2 responses in mice due to variation in the level of expression of an antigen in a recombinant BCG system, Immunology Letters, vol.88, issue.3, pp.175-18410, 2003.
DOI : 10.1016/S0165-2478(03)00043-9

J. Weiner and S. H. Kaufmann, Recent advances towards tuberculosis control: vaccines and biomarkers, Journal of Internal Medicine, vol.393, issue.5, pp.467-48010, 2014.
DOI : 10.1111/joim.12212

C. Montagnani, E. Chiappini, L. Galli, and M. De-martino, Vaccine against tuberculosis: what???s new?, S2, pp.10-1186, 2014.
DOI : 10.1186/1471-2334-14-S1-S2

G. A. Rook, R. Hernandez-pando, and A. Zumla, Tuberculosis due to high-dose challenge in partially immune individuals: a problem for vaccination? The Journal of infectious diseases 199, pp.613-61810, 2009.

A. Vizzini, D. Falco, F. Parrinello, D. Sanfratello, M. A. Cammarata et al., Transforming growth factor ?? (CiTGF-??) gene expression is induced in the inflammatory reaction of Ciona intestinalis, Developmental & Comparative Immunology, vol.55, pp.102-110, 2015.
DOI : 10.1016/j.dci.2015.10.013

L. 'abbate and C. , TGF-beta-mediated sustained ERK1/2 activity promotes the inhibition of intracellular growth of Mycobacterium avium in epithelioid cells surrogates, PloS one, vol.6, 2011.

S. A. Marcus, H. Steinberg, and A. M. Talaat, Protection by novel vaccine candidates, Mycobacterium tuberculosis ??mosR and ??echA7, against challenge with a Mycobacterium tuberculosis Beijing strain, Vaccine, vol.33, issue.42, pp.5633-5639, 2015.
DOI : 10.1016/j.vaccine.2015.08.084

E. Lasunskaia, Emerging multidrug resistant Mycobacterium tuberculosis strains of the Beijing genotype circulating in Russia express a pattern of biological properties associated with enhanced virulence, Microbes and Infection, vol.12, issue.6, pp.467-475, 2010.
DOI : 10.1016/j.micinf.2010.02.008

M. R. Andrade, Pathogenic Mycobacterium bovis strains differ in their ability to modulate the proinflammatory activation phenotype of macrophages, BMC Microbiology, vol.12, issue.1, pp.10-1186, 2012.
DOI : 10.1101/pdb.prot5080

D. F. Hoft, A New Recombinant Bacille Calmette???Gu??rin Vaccine Safely Induces Significantly Enhanced Tuberculosis???Specific Immunity in Human Volunteers, The Journal of Infectious Diseases, vol.198, issue.10, pp.1491-150110, 2008.
DOI : 10.1086/592450

J. Hess, Mycobacterium bovis bacille Calmette-Guerin strains secreting listeriolysin of Listeria monocytogenes, Proceedings of the National Academy of Sciences, vol.25, issue.24, pp.5299-5304, 1998.
DOI : 10.1126/science.8303277

A. S. Pym, Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis, Nature Medicine, vol.9, issue.5, pp.533-53910, 2003.
DOI : 10.1038/nm859

A. G. Loxton, Safety and Immunogenicity of the Recombinant Mycobacterium bovis BCG Vaccine VPM1002 in HIV- Unexposed Newborn Infants in South Africa. Clinical and vaccine immunology: CVI 24, doi:10.1128/CVI, pp.439-455, 2017.

P. Sander, Deletion of zmp1 improves Mycobacterium bovis BCG-mediated protection in a guinea pig model of tuberculosis, Vaccine, vol.33, issue.11, pp.1353-1359058, 2015.
DOI : 10.1016/j.vaccine.2015.01.058

M. P. Berry, S. Blankley, C. M. Graham, C. I. Bloom, and A. Garra, Systems approaches to studying the immune response in tuberculosis, Current Opinion in Immunology, vol.25, issue.5, pp.579-587, 2013.
DOI : 10.1016/j.coi.2013.08.003

A. T. Kamath, New live mycobacterial vaccines: the Geneva consensus on essential steps towards clinical development, Vaccine, vol.23, issue.29, pp.3753-3761, 2005.
DOI : 10.1016/j.vaccine.2005.03.001

K. B. Walker, The second Geneva Consensus: Recommendations for novel live TB vaccines, Vaccine, vol.28, issue.11, pp.2259-2270083, 2010.
DOI : 10.1016/j.vaccine.2009.12.083

M. Fonseca and D. , Experimental tuberculosis: Designing a better model to test vaccines against tuberculosis, Tuberculosis, vol.90, issue.2, pp.135-142005, 2010.
DOI : 10.1016/j.tube.2010.01.005