M. Prudencio, A. Rodriguez, and M. M. Mota, The silent path to thousands of merozoites: the Plasmodium liver stage, Nature Reviews Microbiology, vol.98, issue.11, pp.849-85610, 2006.
DOI : 10.1111/j.1550-7408.1985.tb03104.x

T. Rodrigues, M. Prudencio, R. Moreira, M. M. Mota, and F. Lopes, Targeting the Liver Stage of Malaria Parasites: A Yet Unmet Goal, Journal of Medicinal Chemistry, vol.55, issue.3, pp.995-101210, 2012.
DOI : 10.1021/jm201095h

M. Prudencio, M. M. Mota, and A. M. Mendes, A toolbox to study liver stage malaria, Trends in Parasitology, vol.27, issue.12, pp.565-574, 2011.
DOI : 10.1016/j.pt.2011.09.004

M. Palacin, R. Estevez, J. Bertran, and A. Zorzano, Molecular biology of mammalian plasma membrane amino acid transporters, Physiol Rev, vol.78, pp.969-1054, 1998.

D. Fotiadis, Y. Kanai, and M. Palacin, The SLC3 and SLC7 families of amino acid transporters, Molecular Aspects of Medicine, vol.34, issue.2-3, pp.139-158007, 2013.
DOI : 10.1016/j.mam.2012.10.007

E. I. Closs, J. P. Boissel, A. Habermeier, and A. Rotmann, Structure and Function of Cationic Amino Acid Transporters (CATs), Journal of Membrane Biology, vol.280, issue.2, pp.67-7710, 2006.
DOI : 10.1113/jphysiol.1997.sp021916

E. I. Closs, L. M. Albritton, J. W. Kim, and J. M. Cunningham, Identification of a low affinity, high capacity transporter of cationic amino acids in mouse liver, J Biol Chem, vol.268, pp.7538-7544, 1993.

J. W. Kim, E. I. Closs, L. M. Albritton, and J. M. Cunningham, Transport of cationic amino acids by the mouse ecotropic retrovirus receptor, Nature, vol.352, issue.6337, pp.725-72810352725, 1038.
DOI : 10.1038/352725a0

H. Hosokawa, Cloning and Characterization of a Brain-specific Cationic Amino Acid Transporter, Journal of Biological Chemistry, vol.256, issue.13, pp.8717-8722, 1997.
DOI : 10.1111/j.1476-5381.1992.tb09053.x

S. Wolf, Expression of solute carrier 7A4 (SLC7A4) in the plasma membrane is not sufficient to mediate amino acid transport activity, Biochemical Journal, vol.364, issue.3, pp.767-77510, 2002.
DOI : 10.1042/bj20020084

G. Wu, Arginine metabolism and nutrition in growth, health and disease, Amino Acids, vol.19, issue.Special Issue 1, pp.153-168, 2009.
DOI : 10.1042/bj3360001

J. J. Patel, K. R. Miller, C. Rosenthal, and M. D. Rosenthal, When Is It Appropriate to Use Arginine in Critical Illness?, Nutrition in Clinical Practice, vol.1, issue.9, pp.438-44410, 2016.
DOI : 10.1042/CS20140343

J. G. Vockley, Cloning and Characterization of the Human Type II Arginase Gene, Genomics, vol.38, issue.2, pp.118-1230606, 1996.
DOI : 10.1006/geno.1996.0606

I. B. Muller, R. D. Walter, and C. Wrenger, Structural metal dependency of the arginase from the human malaria parasite Plasmodium falciparum, Biological Chemistry, vol.336, issue.2, pp.117-126015, 2005.
DOI : 10.1074/jbc.M100578200

K. L. Olszewski, Host-Parasite Interactions Revealed by Plasmodium falciparum Metabolomics, Cell Host & Microbe, vol.5, issue.2, pp.191-199004, 2009.
DOI : 10.1016/j.chom.2009.01.004

D. Gupta and R. , 3-Aminooxy-1-Aminopropane and Derivatives Have an Antiproliferative Effect on Cultured Plasmodium falciparum by Decreasing Intracellular Polyamine Concentrations, Antimicrobial Agents and Chemotherapy, vol.49, issue.7, pp.2857-2864, 2005.
DOI : 10.1128/AAC.49.7.2857-2864.2005

K. Clark, M. Dhoogra, A. I. Louw, and L. M. Birkholtz, Transcriptional responses of Plasmodium falciparum to alphadifluoromethylornithine-induced polyamine depletion, Biol Chem, vol.389, pp.111-125014, 2008.

J. V. Becker, Plasmodium falciparum spermidine synthase inhibition results in unique perturbation-specific effects observed on transcript, protein and metabolite levels, BMC Genomics, vol.11, issue.1, pp.10-1186, 2010.
DOI : 10.1186/1471-2164-11-235

S. Muller, Adenosylmethionine Decarboxylase, Journal of Biological Chemistry, vol.258, issue.11, pp.8097-8102, 2000.
DOI : 10.1042/bj2130495

C. Wrenger, K. Luersen, T. Krause, S. Muller, and R. D. Walter, -Adenosyl-l-methionine Decarboxylase, Enables a Well Balanced Polyamine Synthesis without Domain-Domain Interaction, Journal of Biological Chemistry, vol.265, issue.32, pp.29651-2965610, 2001.
DOI : 10.1016/0065-2571(85)90072-X

URL : https://hal.archives-ouvertes.fr/hal-00165494

L. M. Birkholtz, Parasite-specific inserts in the bifunctional S-adenosylmethionine decarboxylase/ornithine decarboxylase of Plasmodium falciparum modulate catalytic activities and domain interactions, Biochemical Journal, vol.377, issue.2, pp.439-44810, 2004.
DOI : 10.1042/bj20030614

S. S. Albuquerque, Host cell transcriptional profiling during malaria liver stage infection reveals a coordinated and sequential set of biological events, BMC Genomics, vol.10, issue.1, pp.10-1186, 2009.
DOI : 10.1186/1471-2164-10-270

D. P. Barry, Cationic Amino Acid Transporter 2 Enhances Innate Immunity during Helicobacter pylori Infection, PLoS ONE, vol.6, issue.12, 2011.
DOI : 10.1371/journal.pone.0029046.s003

M. G. Sans-fons, Arginine Transport Is Impaired in C57Bl/6 Mouse Macrophages as a Result of a Deletion in the Promoter of Slc7a2 (CAT2), and Susceptibility to Leishmania Infection Is Reduced, The Journal of Infectious Diseases, vol.207, issue.11, pp.1684-169310, 2013.
DOI : 10.1093/infdis/jit084

R. W. Thompson, Cationic Amino Acid Transporter-2 Regulates Immunity by Modulating Arginase Activity, PLoS Pathogens, vol.35, issue.3, 2008.
DOI : 10.1371/journal.ppat.1000023.s002

N. Wanasen, C. L. Macleod, L. G. Ellies, and L. Soong, L-Arginine and Cationic Amino Acid Transporter 2B Regulate Growth and Survival of Leishmania amazonensis Amastigotes in Macrophages, Infection and Immunity, vol.75, issue.6, pp.2802-281010, 2007.
DOI : 10.1128/IAI.00026-07

T. Hatanaka, Evidence for the transport of neutral as well as cationic amino acids by ATA3, a novel and liver-specific subtype of amino acid transport system A, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1510, issue.1-2, pp.10-17, 2001.
DOI : 10.1016/S0005-2736(00)00390-4

P. Das, A. Lahiri, and D. Chakravortty, Modulation of the Arginase Pathway in the Context of Microbial Pathogenesis: A Metabolic Enzyme Moonlighting as an Immune Modulator, PLoS Pathogens, vol.172, issue.2, 2010.
DOI : 10.1371/journal.ppat.1000899.t001

S. Portugal, Host-mediated regulation of superinfection in malaria, Nature Medicine, vol.75, issue.6, pp.732-7372368, 2011.
DOI : 10.1016/j.ijpara.2006.06.009

B. C. Mounce, Interferon-Induced Spermidine-Spermine Acetyltransferase and Polyamine Depletion Restrict Zika and Chikungunya Viruses, Cell Host & Microbe, vol.20, issue.2, pp.167-177011, 2016.
DOI : 10.1016/j.chom.2016.06.011

URL : https://hal.archives-ouvertes.fr/hal-01373232

Y. G. Assaraf, J. Golenser, D. T. Spira, and U. Bachrach, Plasmodium falciparum: Synchronization of cultures with dl-??-difluoromethylornithine, an inhibitor of polyamine biosynthesis, Experimental Parasitology, vol.61, issue.2, pp.229-235, 1986.
DOI : 10.1016/0014-4894(86)90156-6

Y. G. Assaraf, J. Golenser, D. T. Spira, G. Messer, and U. Bachrach, Cytostatic effect of DL-?-difluoromethylornithine against Plasmodium falciparum and its reversal by diamines and spermidine, Parasitology Research, vol.30, issue.4, pp.313-318, 1987.
DOI : 10.1111/j.1550-7408.1983.tb05336.x

M. R. Hollingdale, P. P. Mccann, and A. Sjoerdsma, Plasmodium berghei: Inhibitors of ornithine decarboxylase block exoerythrocytic schizogony, Experimental Parasitology, vol.60, issue.1, pp.111-117, 1985.
DOI : 10.1016/S0014-4894(85)80028-X

H. Costa, <i>Human cytomegalovirus</i> may promote tumour progression by upregulating arginase-2, Oncotarget, vol.7, issue.30, p.9722, 2016.
DOI : 10.18632/oncotarget.9722

O. Kovamees, A. Shemyakin, and J. Pernow, Amino acid metabolism reflecting arginase activity is increased in patients with type 2 diabetes and associated with endothelial dysfunction, Diabetes and Vascular Disease Research, vol.218, issue.5, pp.354-36010, 2016.
DOI : 10.1016/j.atherosclerosis.2011.04.041

M. Gogoi, A. Datey, K. T. Wilson, and D. Chakravortty, Dual role of arginine metabolism in establishing pathogenesis, Current Opinion in Microbiology, vol.29, pp.43-48005, 2016.
DOI : 10.1016/j.mib.2015.10.005

M. J. Gardner, Genome sequence of the human malaria parasite Plasmodium falciparum, Nature, vol.241, issue.6906, pp.498-51110, 2002.
DOI : 10.1038/nature01099

M. Krugliak, J. Zhang, and H. Ginsburg, Intraerythrocytic Plasmodium falciparum utilizes only a fraction of the amino acids derived from the digestion of host cell cytosol for the biosynthesis of its proteins, Molecular and Biochemical Parasitology, vol.119, issue.2, pp.249-256, 2002.
DOI : 10.1016/S0166-6851(01)00427-3

J. Liu, E. S. Istvan, I. Y. Gluzman, J. Gross, and D. E. Goldberg, Plasmodium falciparum ensures its amino acid supply with multiple acquisition pathways and redundant proteolytic enzyme systems, Proceedings of the National Academy of Sciences, vol.96, issue.15, pp.8840-884510, 2006.
DOI : 10.1073/pnas.96.15.8716

R. Teng, H NMR spectroscopy, NMR in Biomedicine, vol.233, issue.3, pp.292-30210, 2009.
DOI : 10.1042/bj2220815

E. Rajendran, Cationic amino acid transporters play key roles in the survival and transmission of apicomplexan parasites, Nature Communications, vol.73, pp.10-1038, 2017.
DOI : 10.1016/j.chom.2015.04.003

D. P. Dowling, -Arginine Depletion in Malarial Infection,, Biochemistry, vol.49, issue.26, pp.5600-5608, 2010.
DOI : 10.1021/bi100390z

URL : https://hal.archives-ouvertes.fr/hal-01555550

Y. C. Martins, G. M. Zanini, J. A. Frangos, and L. J. Carvalho, Efficacy of Different Nitric Oxide-Based Strategies in Preventing Experimental Cerebral Malaria by Plasmodium berghei ANKA, PLoS ONE, vol.342, issue.2, 2012.
DOI : 10.1371/journal.pone.0032048.g004

X. Zhu, Y. Pan, Y. Li, L. Cui, and Y. Cao, Supplement of L-Arg improves protective immunity during early-stage Plasmodium yoelii 17XL infection, Parasite Immunology, vol.180, issue.8-9, pp.412-420, 2012.
DOI : 10.4049/jimmunol.180.4.2496

L. M. Birkholtz, Polyamine homoeostasis as a drug target in pathogenic protozoa: peculiarities and possibilities, Biochemical Journal, vol.237, issue.2, pp.229-24410, 2011.
DOI : 10.1006/expr.1995.1090

A. J. Bitonti, Bis(benzyl)polyamine analogs inhibit the growth of chloroquine-resistant human malaria parasites (Plasmodium falciparum) in vitro and in combination with alpha-difluoromethylornithine cure murine malaria., Proceedings of the National Academy of Sciences, vol.86, issue.2, pp.651-655, 1989.
DOI : 10.1073/pnas.86.2.651

L. P. Liew, A. N. Pearce, M. Kaiser, and B. Copp, Synthesis and in??vitro and in??vivo evaluation of antimalarial polyamines, European Journal of Medicinal Chemistry, vol.69, pp.22-31055, 2013.
DOI : 10.1016/j.ejmech.2013.07.055

J. Wang, M. Kaiser, and B. Copp, Investigation of Indolglyoxamide and Indolacetamide Analogues of Polyamines as Antimalarial and Antitrypanosomal Agents, Marine Drugs, vol.54, issue.6, pp.3138-316010, 2014.
DOI : 10.1016/j.molbiopara.2004.04.007

B. Nicholson, C. K. Manner, J. Kleeman, and C. L. Macleod, Sustained Nitric Oxide Production in Macrophages Requires the Arginine Transporter CAT2, Journal of Biological Chemistry, vol.280, issue.19, pp.15881-15885, 2001.
DOI : 10.1074/jbc.272.50.31213

B. Franke-fayard, A Plasmodium berghei reference line that constitutively expresses GFP at a high level throughout the complete life cycle, Molecular and Biochemical Parasitology, vol.137, issue.1, pp.23-33007, 2004.
DOI : 10.1016/j.molbiopara.2004.04.007

I. H. Ploemen, Visualisation and Quantitative Analysis of the Rodent Malaria Liver Stage by Real Time Imaging, PLoS ONE, vol.24, issue.11, p.7881, 2009.
DOI : 10.1371/journal.pone.0007881.s010

P. Meireles, GLUT1-mediated glucose uptake plays a crucial role during Plasmodium hepatic infection, Cell Microbiol, pp.10-1111, 2016.

M. Prudencio, C. D. Rodrigues, R. Ataide, and M. M. Mota, Dissecting in vitro host cell infection by Plasmodium sporozoites using flow cytometry, Cellular Microbiology, vol.58, issue.0, pp.218-224, 2008.
DOI : 10.1016/j.ijpara.2006.06.009

L. A. Goncalves, A. M. Vigario, and C. Penha-goncalves, Improved isolation of murine hepatocytes for in vitro malaria liver stage studies, Malaria Journal, vol.6, issue.1, pp.10-1186, 2007.
DOI : 10.1186/1475-2875-6-169

P. Liehl, Host-cell sensors for Plasmodium activate innate immunity against liver-stage infection, Nature Medicine, vol.12, issue.1, pp.47-533424, 2014.
DOI : 10.1007/BF00932618

R. I. Aroeira, A. M. Sebastiao, and C. A. Valente, BDNF, via truncated TrkB receptor, modulates GlyT1 and GlyT2 in astrocytes, Glia, vol.8, issue.12, pp.2181-2197, 2015.
DOI : 10.1038/nn1510

R. Madhubala, Thin-Layer Chromatographic Method for Assaying Polyamines, Methods Mol Biol, vol.79, pp.131-136, 1998.
DOI : 10.1385/0-89603-448-8:131