G. Borgherini, Outbreak of Chikungunya on Reunion Island: Early Clinical and Laboratory Features in 157 Adult Patients, Clinical Infectious Diseases, vol.44, issue.11, pp.1401-1407, 2007.
DOI : 10.1086/517537

S. D. Thiberville, Chikungunya fever: Epidemiology, clinical syndrome, pathogenesis and therapy, Antiviral Research, vol.99, issue.3, pp.345-370, 2013.
DOI : 10.1016/j.antiviral.2013.06.009

T. Morrison, Reemergence of Chikungunya Virus, Journal of Virology, vol.88, issue.20, pp.11644-11647, 2014.
DOI : 10.1128/JVI.01432-14

A. Pierro, Persistence of anti???chikungunya virus???specific antibodies in a cohort of patients followed from??the acute phase of infection??after the 2007 outbreak in??Italy, New Microbes and New Infections, vol.7, pp.23-25, 2015.
DOI : 10.1016/j.nmni.2015.04.002

M. Enserink, INFECTIOUS DISEASES: Massive Outbreak Draws Fresh Attention to Little-Known Virus, Science, vol.311, issue.5764, p.1085, 2006.
DOI : 10.1126/science.311.5764.1085a

A. M. Powers and C. H. Logue, Changing patterns of chikungunya virus: re-emergence of a zoonotic arbovirus, Journal of General Virology, vol.88, issue.9, pp.2363-2377, 2007.
DOI : 10.1099/vir.0.82858-0

J. Jose, J. E. Snyder, and R. J. Kuhn, A structural and functional perspective of alphavirus replication and assembly, Future Microbiology, vol.81, issue.7, pp.837-856, 2009.
DOI : 10.1007/978-1-59745-222-9_6

B. Simizu, K. Yamamoto, K. Hashimoto, and T. Ogata, Structural proteins of Chikungunya virus, J Virol, vol.51, pp.254-258, 1984.

J. E. Voss, Glycoprotein organization of Chikungunya virus particles revealed by X-ray crystallography, Nature, vol.58, issue.7324, pp.709-712, 2010.
DOI : 10.1038/nature09555

URL : https://hal.archives-ouvertes.fr/pasteur-00545540

J. Y. Leung, M. M. Ng, and J. J. Chu, Replication of Alphaviruses: A Review on the Entry Process of Alphaviruses into Cells, Advances in Virology, vol.7, issue.3, p.249640, 2011.
DOI : 10.1016/S1097-2765(01)00212-X

R. C. Lee, Mosquito Cellular Factors and Functions in Mediating the Infectious entry of Chikungunya Virus, PLoS Neglected Tropical Diseases, vol.4, issue.1, p.2050, 2013.
DOI : 10.1371/journal.pntd.0002050.s003

E. Bernard, Endocytosis of Chikungunya Virus into Mammalian Cells: Role of Clathrin and Early Endosomal Compartments, PLoS ONE, vol.324, issue.2, p.11479, 2010.
DOI : 10.1371/journal.pone.0011479.s002

URL : https://hal.archives-ouvertes.fr/hal-00503829

B. Thaa, ABSTRACT, Journal of Virology, vol.89, issue.22, pp.11420-11437, 2015.
DOI : 10.1128/JVI.01579-15

M. Kielian, Membrane fusion And the Alphavirus Life Cycle, Adv Virus Res, vol.45, pp.113-151, 1995.
DOI : 10.1016/S0065-3527(08)60059-7

M. Solignat, B. Gay, S. Higgs, L. Briant, and C. Devaux, Replication cycle of chikungunya: A re-emerging arbovirus, Virology, vol.393, issue.2, pp.183-197, 2009.
DOI : 10.1016/j.virol.2009.07.024

URL : https://hal.archives-ouvertes.fr/hal-00420502

T. Phalen and M. Kielian, Cholesterol is required for infection by Semliki Forest virus, The Journal of Cell Biology, vol.112, issue.4, pp.615-623, 1991.
DOI : 10.1083/jcb.112.4.615

C. J. Lee, H. R. Lin, C. L. Liao, and Y. L. Lin, Cholesterol Effectively Blocks Entry of Flavivirus, Journal of Virology, vol.82, issue.13, pp.6470-6480, 2008.
DOI : 10.1128/JVI.00117-08

J. M. Mackenzie, A. A. Khromykh, and R. G. Parton, Cholesterol Manipulation by West Nile Virus Perturbs the Cellular Immune Response, Cell Host & Microbe, vol.2, issue.4, pp.229-239, 2007.
DOI : 10.1016/j.chom.2007.09.003

C. Rothwell, Cholesterol biosynthesis modulation regulates dengue viral replication, Virology, vol.389, issue.1-2, pp.8-19, 2009.
DOI : 10.1016/j.virol.2009.03.025

G. R. Medigeshi, A. J. Hirsch, D. N. Streblow, J. Nikolich-zugich, and J. A. Nelson, West Nile Virus Entry Requires Cholesterol-Rich Membrane Microdomains and Is Independent of ??v??3 Integrin, Journal of Virology, vol.82, issue.11, pp.5212-5219, 2008.
DOI : 10.1128/JVI.00008-08

R. E. Infante, NPC2 facilitates bidirectional transfer of cholesterol between NPC1 and lipid bilayers, a step in cholesterol egress from lysosomes, Proceedings of the National Academy of Sciences, vol.15, issue.2, pp.15287-15292, 2008.
DOI : 10.1016/j.molcel.2004.06.019

H. J. Kwon, Structure of N-Terminal Domain of NPC1 Reveals Distinct Subdomains for Binding and Transfer of Cholesterol, Cell, vol.137, issue.7, pp.1213-1224, 2009.
DOI : 10.1016/j.cell.2009.03.049

P. G. Pentchev, The Niemann-Pick C lesion and its relationship to the intracellular distribution and utilization of LDL cholesterol, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1225, issue.3, pp.235-243, 1994.
DOI : 10.1016/0925-4439(94)90001-9

K. W. Underwood, B. Andemariam, G. L. Mcwilliams, and L. Liscum, Quantitative analysis of hydrophobic amine inhibition of intracellular cholesterol transport, J Lipid Res, vol.37, pp.1556-1568, 1996.

L. Liscum and J. R. Faust, The intracellular transport of low density lipoprotein-derived cholesterol is inhibited in Chinese hamster ovary cells cultured with 3-beta-[2-(diethylamino)ethoxy]androst-5-en-17-one, J Biol Chem, vol.264, pp.11796-11806, 1989.

A. S. Härmälä, M. I. Pörn, P. Mattjus, and J. P. Slotte, Cholesterol transport from plasma membranes to intracellular membranes is inhibited by 3??-[2-(diethylamino) ethoxy]androst-5-en-17-one, Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, vol.1211, issue.3, pp.317-325, 1994.
DOI : 10.1016/0005-2760(94)90156-2

R. C. Sexton, S. R. Panini, F. Azran, and H. Rudney, Effects of 3.beta.-[2-(diethylamino)ethoxy]androst-5-en-17-one on the synthesis of cholesterol and ubiquinone in rat intestinal epithelial cell cultures, Biochemistry, vol.22, issue.25, pp.5687-5692, 1983.
DOI : 10.1021/bi00294a001

R. S. Funk and J. P. Krise, Cationic Amphiphilic Drugs Cause a Marked Expansion of Apparent Lysosomal Volume: Implications for an Intracellular Distribution-Based Drug Interaction, Molecular Pharmaceutics, vol.9, pp.1384-1395, 2012.
DOI : 10.1021/mp200641e

E. Bernard, Human keratinocytes restrict chikungunya virus replication at a post-fusion step, Virology, vol.476, pp.1-10, 2015.
DOI : 10.1016/j.virol.2014.11.013

URL : https://hal.archives-ouvertes.fr/hal-01131877

Y. Tang, I. C. Leao, E. M. Coleman, R. S. Broughton, and J. Hildreth, Deficiency of Niemann-Pick Type C-1 Protein Impairs Release of Human Immunodeficiency Virus Type 1 and Results in Gag Accumulation in Late Endosomal/Lysosomal Compartments, Journal of Virology, vol.83, issue.16, pp.7982-7995, 2009.
DOI : 10.1128/JVI.00259-09

M. T. Vanier and P. Latour, Laboratory diagnosis of Niemann???Pick disease type C: The filipin staining test, Methods Cell Biol, vol.126, pp.357-375, 2015.
DOI : 10.1016/bs.mcb.2014.10.028

A. S. Herbert, Niemann-pick C1 is essential for ebolavirus replication and pathogenesis in vivo, MBio, vol.6, pp.565-00515, 2015.

W. Wang, Lipid rafts play an important role in the vesicular stomatitis virus life cycle, Archives of Virology, vol.346, issue.4, pp.595-600, 2009.
DOI : 10.1042/bj3350433

H. K. Johannsdottir, R. Mancini, J. Kartenbeck, L. Amato, and A. Helenius, Host Cell Factors and Functions Involved in Vesicular Stomatitis Virus Entry, Journal of Virology, vol.83, issue.1, pp.440-453, 2009.
DOI : 10.1128/JVI.01864-08

M. K. Poh, U18666A, an intra-cellular cholesterol transport inhibitor, inhibits dengue virus entry and replication, Antiviral Research, vol.93, issue.1, pp.191-198, 2012.
DOI : 10.1016/j.antiviral.2011.11.014

J. E. Carette, Ebola virus entry requires the cholesterol transporter Niemann???Pick C1, Nature, vol.107, issue.7364, pp.340-343, 2011.
DOI : 10.1073/pnas.1007152107

C. J. Shoemaker, Multiple Cationic Amphiphiles Induce a Niemann-Pick C Phenotype and Inhibit Ebola Virus Entry and Infection, PLoS ONE, vol.11, issue.2, p.56265, 2013.
DOI : 10.1371/journal.pone.0056265.s002

M. Aboukhatwa and Y. Luo, Antidepressants modulate intracellular amyloid peptide species in N2a neuroblastoma cells, J Alzheimers Dis, vol.24, pp.221-234, 2011.

E. Teissier and E. Pécheur, Lipids as modulators of membrane fusion mediated by viral fusion proteins, European Biophysics Journal, vol.441, issue.Pt 1, pp.887-899, 2007.
DOI : 10.1042/bss0720151

URL : https://hal.archives-ouvertes.fr/hal-00315133

T. E. Hoornweg, ABSTRACT, Journal of Virology, vol.90, issue.9, pp.4745-4756, 2016.
DOI : 10.1128/JVI.03184-15

M. V. Rudorfer and W. Potter, Metabolism of tricyclic antidepressants, Cellular and Molecular Neurobiology, vol.19, issue.3, pp.373-409, 1999.
DOI : 10.1023/A:1006949816036

K. Pakkanen, Desipramine induces disorder in cholesterol-rich membranes: implications for viral trafficking, Physical Biology, vol.6, issue.4, p.46004, 2009.
DOI : 10.1088/1478-3975/6/4/046004

K. Stiasny, C. Koessl, and F. Heinz, Involvement of Lipids in Different Steps of the Flavivirus Fusion Mechanism, Journal of Virology, vol.77, issue.14, pp.7856-7862, 2003.
DOI : 10.1128/JVI.77.14.7856-7862.2003

R. Hamel, ABSTRACT, Journal of Virology, vol.89, issue.17, pp.8880-8896, 2015.
DOI : 10.1128/JVI.00354-15

N. Luplertlop, Induction of a Peptide with Activity against a Broad Spectrum of Pathogens in the Aedes aegypti Salivary Gland, following Infection with Dengue Virus, PLoS Pathogens, vol.25, issue.1, p.1001252, 2011.
DOI : 10.1371/journal.ppat.1001252.s003

URL : https://hal.archives-ouvertes.fr/hal-00558260

T. Mashimo, A nonsense mutation in the gene encoding 2'-5'-oligoadenylate synthetase/L1 isoform is associated with West Nile virus susceptibility in laboratory mice, Proceedings of the National Academy of Sciences, vol.8, issue.10, pp.11311-11316, 2002.
DOI : 10.1128/MCB.8.10.4518

A. Utt, Versatile Trans-Replication Systems for Chikungunya Virus Allow Functional Analysis and Tagging of Every Replicase Protein, PLOS ONE, vol.88, issue.3, p.151616, 2016.
DOI : 10.1371/journal.pone.0151616.g008

F. S. Varghese, ABSTRACT, Antimicrobial Agents and Chemotherapy, vol.61, issue.3, 2016.
DOI : 10.1128/AAC.02227-16

A. Utt, ABSTRACT, Journal of Virology, vol.89, issue.6, pp.3145-3162, 2015.
DOI : 10.1128/JVI.03213-14

L. Pohjala, Inhibitors of Alphavirus Entry and Replication Identified with a Stable Chikungunya Replicon Cell Line and Virus-Based Assays, PLoS ONE, vol.3, issue.1, p.28923, 2011.
DOI : 10.1371/journal.pone.0028923.s002

P. Ekchariyawat, Inflammasome signaling pathways exert antiviral effect against Chikungunya virus in human dermal fibroblasts, Infection, Genetics and Evolution, vol.32, pp.401-408, 2015.
DOI : 10.1016/j.meegid.2015.03.025

URL : https://hal.archives-ouvertes.fr/hal-01148961

B. Salvador, Y. Zhou, A. Michault, M. O. Muench, and G. Simmons, Characterization of Chikungunya pseudotyped viruses: Identification of refractory cell lines and demonstration of cellular tropism differences mediated by mutations in E1 glycoprotein, Virology, vol.393, issue.1, pp.33-41, 2009.
DOI : 10.1016/j.virol.2009.07.013