E. Chen, E. Grote, W. Mohler, and A. Vignery, Cell-cell fusion, FEBS Letters, vol.202, issue.11, pp.2181-93, 2007.
DOI : 10.1084/jem.20051123

J. Lifson, G. Reyes, M. Mcgrath, B. Stein, and E. Engleman, AIDS retrovirus induced cytopathology: giant cell formation and involvement of CD4 antigen, Science, vol.232, issue.4754, pp.1123-1130, 1986.
DOI : 10.1126/science.3010463

M. Kowalski, J. Potz, L. Basiripour, T. Dorfman, W. Goh et al., Functional regions of the envelope glycoprotein of human immunodeficiency virus type 1, Science, vol.237, issue.4820, pp.1351-1356, 1987.
DOI : 10.1126/science.3629244

A. Sylwester, S. Murphy, D. Shutt, and D. Soll, HIV-induced T cell syncytia are self-perpetuating and the primary cause of T cell death in culture, J Immunol, vol.158, issue.8, pp.3996-4007, 1997.

A. Sylwester, K. Daniels, and D. Soll, The invasive and destructive behavior of HIV-induced T cell syncytia on collagen and endothelium, J Leukoc Biol, vol.63, issue.2, pp.233-277, 1998.

S. Koenig, H. Gendelman, J. Orenstein, M. Canto, G. Pezeshkpour et al., Detection of AIDS virus in macrophages in brain tissue from AIDS patients with encephalopathy, Science, vol.233, issue.4768, pp.1089-93, 1986.
DOI : 10.1126/science.3016903

P. Sune, T. Navia, B. Price, R. , C. Cardo et al., HIV antigen in the brains of patients with the AIDS dementia complex, Annals of Neurology, vol.19, issue.5, pp.490-496, 1987.
DOI : 10.1002/ana.410190603

A. Rinfret, H. Latendresse, R. Lefebvre, G. St-louis, P. Jolicoeur et al., Human immunodeficiency virus-infected multinucleated histiocytes in oropharyngeal lymphoid tissues from two asymptomatic patients, Am J Pathol, vol.138, issue.2, pp.421-427, 1991.

S. Frankel, B. Wenig, A. Burke, P. Mannan, L. Thompson et al., Replication of HIV-1 in Dendritic Cell-Derived Syncytia at the Mucosal Surface of the Adenoid, Science, vol.272, issue.5258, pp.115-122, 1996.
DOI : 10.1126/science.272.5258.115

J. Orenstein, In Vivo Cytolysis and Fusion of Human Immunodeficiency Virus Type 1???Infected Lymphocytes in Lymphoid Tissue, The Journal of Infectious Diseases, vol.182, issue.1, pp.338-380, 2000.
DOI : 10.1086/315640

T. Murooka, M. Deruaz, F. Marangoni, V. Vrbanac, E. Seung et al., HIV-infected T cells are migratory vehicles for viral dissemination, Nature, vol.757, issue.7419, pp.283-290, 2013.
DOI : 10.1007/978-1-61779-166-6_16

M. Symeonides, T. Murooka, L. Bellfy, N. Roy, T. Mempel et al., HIV-1-Induced Small T Cell Syncytia Can Transfer Virus Particles to Target Cells through Transient Contacts, Viruses, vol.640, issue.12, pp.6590-603, 2015.
DOI : 10.1038/nmeth.2019

T. Murooka, R. Sharaf, and T. Mempel, Large Syncytia in Lymph Nodes Induced by CCR5-Tropic HIV-1, AIDS Research and Human Retroviruses, vol.31, issue.5, pp.471-473, 2015.
DOI : 10.1089/aid.2014.0378

K. Law, N. Komarova, A. Yewdall, R. Lee, O. Herrera et al., In??Vivo HIV-1 Cell-to-Cell Transmission Promotes Multicopy Micro-compartmentalized Infection, Cell Reports, vol.15, issue.12, pp.2771-83, 2016.
DOI : 10.1016/j.celrep.2016.05.059

T. Igakura, J. Stinchcombe, P. Goon, G. Taylor, J. Weber et al., Spread of HTLV-I Between Lymphocytes by Virus-Induced Polarization of the Cytoskeleton, Science, vol.299, issue.5613, pp.1713-1719, 2003.
DOI : 10.1126/science.1080115

R. Alvarez, M. Barría, and B. Chen, Unique Features of HIV-1 Spread through T Cell Virological Synapses, PLoS Pathogens, vol.490, issue.12, pp.1004513-1004517, 2014.
DOI : 10.1371/journal.ppat.1004513.g001

M. Symeonides, M. Lambelé, N. Roy, and M. Thali, Evidence Showing that Tetraspanins Inhibit HIV-1-Induced Cell-Cell Fusion at a Post-Hemifusion Stage, Viruses, vol.73, issue.3, pp.1078-90, 2014.
DOI : 10.3390/v4113020

N. Roy, M. Lambele, J. Chan, M. Symeonides, and M. Thali, Ezrin Is a Component of the HIV-1 Virological Presynapse and Contributes to the Inhibition of Cell-Cell Fusion, Journal of Virology, vol.88, issue.13, pp.550-564
DOI : 10.1128/JVI.00550-14

J. Weng, D. Krementsov, S. Khurana, N. Roy, and M. Thali, Formation of Syncytia Is Repressed by Tetraspanins in Human Immunodeficiency Virus Type 1-Producing Cells, Journal of Virology, vol.83, issue.15, pp.7467-74, 2009.
DOI : 10.1128/JVI.00163-09

O. Schwartz, Y. Rivière, J. Heard, and O. Danos, Reduced cell surface expression of processed human immunodeficiency virus type 1 envelope glycoprotein in the presence of Nef, J Virol, vol.67, issue.6, pp.3274-80, 1993.

T. Murakami, S. Ablan, E. Freed, and Y. Tanaka, Regulation of Human Immunodeficiency Virus Type 1 Env-Mediated Membrane Fusion by Viral Protease Activity, Journal of Virology, vol.78, issue.2, pp.1026-1057, 2004.
DOI : 10.1128/JVI.78.2.1026-1031.2004

N. Roy, J. Chan, M. Lambele, and M. Thali, Clustering and Mobility of HIV-1 Env at Viral Assembly Sites Predict Its Propensity To Induce Cell-Cell Fusion, Journal of Virology, vol.87, issue.13, pp.7516-7541, 2013.
DOI : 10.1128/JVI.00790-13

D. Wyma, J. Jiang, J. Shi, J. Zhou, J. Lineberger et al., Coupling of Human Immunodeficiency Virus Type 1 Fusion to Virion Maturation: a Novel Role of the gp41 Cytoplasmic Tail, Journal of Virology, vol.78, issue.7, pp.3429-3464, 2004.
DOI : 10.1128/JVI.78.7.3429-3435.2004

C. Holm, J. Sorb, M. Jakobsen, N. Cheshenko, K. Horan et al., Virus-cell fusion as a trigger of innate immunity dependent on the adaptor STING, Nature Immunology, vol.72, issue.8, pp.737-780, 2012.
DOI : 10.1016/j.immuni.2011.05.016

F. Herschke, S. Plumet, T. Duhen, O. Azocar, J. Druelle et al., Cell-Cell Fusion Induced by Measles Virus Amplifies the Type I Interferon Response, Journal of Virology, vol.81, issue.23, pp.12859-71, 2007.
DOI : 10.1128/JVI.00078-07

URL : https://hal.archives-ouvertes.fr/hal-00169132

V. Simon, N. Bloch, and N. Landau, Intrinsic host restrictions to HIV-1 and mechanisms of viral escape, Nature Immunology, vol.70, issue.6, pp.546-53, 2015.
DOI : 10.1016/j.chom.2010.12.005

A. Compton, T. Bruel, F. Porrot, A. Mallet, M. Sachse et al., IFITM Proteins Incorporated into HIV-1 Virions Impair Viral Fusion and Spread, Cell Host & Microbe, vol.16, issue.6, pp.736-783, 2014.
DOI : 10.1016/j.chom.2014.11.001

URL : https://hal.archives-ouvertes.fr/pasteur-01109877

K. Tartour, R. Appourchaux, J. Gaillard, X. Nguyen, D. S. Turpin et al., IFITM proteins are incorporated onto HIV-1 virion particles and negatively imprint their infectivity, Retrovirology, vol.7, issue.455, p.103, 2014.
DOI : 10.1371/journal.ppat.1002221

C. Bailey, G. Zhong, I. Huang, and M. Farzan, IFITM-Family Proteins: The Cell's First Line of Antiviral Defense, Annual Review of Virology, vol.1, issue.1, pp.261-83, 2014.
DOI : 10.1146/annurev-virology-031413-085537

A. Rosa, A. Chande, S. Ziglio, D. Sanctis, V. Bertorelli et al., HIV-1 Nef promotes infection by excluding SERINC5 from virion incorporation, Nature, vol.71, issue.7572, pp.212-219, 2015.
DOI : 10.1038/nmeth.1226

Y. Usami, Y. Wu, and H. Göttlinger, SERINC3 and SERINC5 restrict HIV-1 infectivity and are counteracted by Nef, Nature, vol.66, issue.7572, pp.218-241, 2015.
DOI : 10.1038/nprot.2008.73

C. Krapp, D. Hotter, A. Gawanbacht, P. Mclaren, S. Kluge et al., Guanylate Binding Protein (GBP) 5 Is an Interferon-Inducible Inhibitor of HIV-1 Infectivity, Cell Host & Microbe, vol.19, issue.4, pp.504-518, 2016.
DOI : 10.1016/j.chom.2016.02.019

W. Wei and X. Yu, HIV-1 Envelope Under Attack, Trends in Microbiology, vol.24, issue.3, pp.164-170, 2016.
DOI : 10.1016/j.tim.2016.01.004

C. Goffinet, Cellular Antiviral Factors that Target Particle Infectivity of HIV-1, Current HIV Research, vol.14, issue.3, pp.211-217, 2016.
DOI : 10.2174/1570162X14666151216145521

J. Tian, K. Huang, S. Krishnan, C. Svabek, D. Rowe et al., RAGE inhibits human respiratory syncytial virus syncytium formation by interfering with F-protein function, Journal of General Virology, vol.94, issue.Pt_8, pp.1691-700, 2013.
DOI : 10.1099/vir.0.049254-0