M. Lewandoski, MOUSE GENOMIC TECHNOLOGIES: CONDITIONAL CONTROL OF GENE EXPRESSION IN THE MOUSE, Nature Reviews Genetics, vol.2, issue.10, pp.743-755, 2001.
DOI : 10.1038/35093537

C. Babinet and M. Cohen-tannoudji, Genome engineering via homologous recombination in mouse embryonic stem (ES) cells: an amazingly versatile tool for the study of mammalian biology, Anais da Academia Brasileira de Ci??ncias, vol.392, issue.3, pp.365-383, 2001.
DOI : 10.1038/33423

G. Donoho, M. Jasin, and P. Berg, Analysis of Gene Targeting and Intrachromosomal Homologous Recombination Stimulated by Genomic Double-Strand Breaks in Mouse Embryonic Stem Cells, Molecular and Cellular Biology, vol.18, issue.7, pp.4070-4078, 1998.
DOI : 10.1128/MCB.18.7.4070

M. Cohen-tannoudji, I-Induced Gene Replacement at a Natural Locus in Embryonic Stem Cells, Molecular and Cellular Biology, vol.18, issue.3, pp.1444-1448, 1998.
DOI : 10.1128/MCB.18.3.1444

T. Gaj, C. A. Gersbach, C. F. Barbas, . Zfn, and C. Talen, ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering, Trends in Biotechnology, vol.31, issue.7, pp.397-405, 2013.
DOI : 10.1016/j.tibtech.2013.04.004

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3694601

J. A. Doudna and E. Charpentier, The new frontier of genome engineering with CRISPR-Cas9, Science, vol.32, issue.6, pp.1258096-1258096, 2014.
DOI : 10.1038/nbt.2884

E. S. Lander, The Heroes of CRISPR, Cell, vol.164, issue.1-2, pp.18-28, 2016.
DOI : 10.1016/j.cell.2015.12.041

E. Pennisi, C. The, and . Craze, The CRISPR Craze, Science, vol.341, issue.6148, pp.833-836, 2013.
DOI : 10.1126/science.341.6148.833

M. M. Harrison, B. V. Jenkins, K. M. O-'connor-giles, and J. Wildonger, A CRISPR view of development, Genes & Development, vol.28, issue.17, pp.1859-1872, 2014.
DOI : 10.1101/gad.248252.114

B. Shen, Generation of gene-modified mice via Cas9/RNA-mediated gene targeting, Cell Research, vol.23, issue.5, pp.720-723, 2013.
DOI : 10.1126/science.1231143

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3641603

H. Wang, One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR/Cas-Mediated Genome Engineering, Cell, vol.153, issue.4, pp.910-918, 2013.
DOI : 10.1016/j.cell.2013.04.025

H. Yang, One-Step Generation of Mice Carrying Reporter and Conditional Alleles by CRISPR/Cas-Mediated Genome Engineering, Cell, vol.154, issue.6, pp.1370-1379, 2013.
DOI : 10.1016/j.cell.2013.08.022

URL : http://doi.org/10.1016/j.cell.2013.08.022

Y. Wu, Correction of a Genetic Disease in Mouse via Use of CRISPR-Cas9, Cell Stem Cell, vol.13, issue.6, pp.659-662, 2013.
DOI : 10.1016/j.stem.2013.10.016

W. Fujii, A. Onuma, K. Sugiura, and K. Naito, Efficient generation of genome-modified mice via offset-nicking by CRISPR/Cas system, Biochemical and Biophysical Research Communications, vol.445, issue.4, pp.791-794, 2014.
DOI : 10.1016/j.bbrc.2014.01.141

T. Horii, Validation of microinjection methods for generating knockout mice by CRISPR/Cas-mediated genome engineering, Scientific Reports, vol.1, issue.1, p.4513, 2014.
DOI : 10.7717/peerj.230

S. Yen, Somatic mosaicism and allele complexity induced by CRISPR/Cas9 RNA injections in mouse zygotes, Developmental Biology, vol.393, issue.1, pp.3-9, 2014.
DOI : 10.1016/j.ydbio.2014.06.017

URL : http://doi.org/10.1016/j.ydbio.2014.06.017

V. T. Chu, Efficient generation of Rosa26 knock-in mice using CRISPR/Cas9 in C57BL/6 zygotes, BMC Biotechnology, vol.3, issue.1, 2016.
DOI : 10.1038/nmeth884

W. Qin, Efficient CRISPR/Cas9-Mediated Genome Editing in Mice by Zygote Electroporation of Nuclease, Genetics, vol.200, issue.2, pp.423-430, 2015.
DOI : 10.1534/genetics.115.176594

Y. Wu, Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells, Cell Research, vol.149, issue.1, pp.67-79, 2015.
DOI : 10.1016/j.cell.2012.04.002

M. Hashimoto and T. Takemoto, Electroporation enables the efficient mRNA delivery into the mouse zygotes and facilitates CRISPR/Cas9-based genome editing, Scientific Reports, vol.49, issue.1, p.11315, 2015.
DOI : 10.1002/dvg.20753

URL : http://doi.org/10.1038/srep11315

T. Aida, Cloning-free CRISPR/Cas system facilitates functional cassette knock-in in mice, Genome Biology, vol.5, issue.1, p.507, 2015.
DOI : 10.1038/ncomms6560

URL : http://doi.org/10.1186/s13059-015-0653-x

J. Renaud, Improved Genome Editing Efficiency and Flexibility Using Modified Oligonucleotides with TALEN and CRISPR-Cas9 Nucleases, Cell Reports, vol.14, issue.9, pp.2263-2272, 2016.
DOI : 10.1016/j.celrep.2016.02.018

URL : https://hal.archives-ouvertes.fr/hal-01371505

H. Miura, C. B. Gurumurthy, T. Sato, M. Sato, M. Ohtsuka et al., CRISPR/Cas9-based generation of knockdown mice by intronic insertion of artificial microRNA using longer single-stranded DNA, Scientific Reports, vol.11, issue.1, p.12799, 2015.
DOI : 10.1038/nmeth.2857

K. Yoshimi, T. Kaneko, B. Voigt, and T. Mashimo, Allele-specific genome editing and correction of disease-associated phenotypes in rats using the CRISPR???Cas platform, Nature Communications, vol.156, p.4240, 2014.
DOI : 10.1016/j.cryobiol.2013.07.004

K. Boroviak, B. Doe, R. Banerjee, F. Yang, and A. Bradley, Chromosome engineering in zygotes with CRISPR/Cas9, genesis, vol.10, issue.2, pp.78-85, 2016.
DOI : 10.1371/journal.pone.0120396

URL : http://doi.org/10.1002/dvg.22915

P. Singh, A Mouse Geneticist's Practical Guide to CRISPR Applications, Genetics, vol.199, issue.1, pp.1-15, 2015.
DOI : 10.1534/genetics.114.169771

URL : http://www.genetics.org/content/genetics/199/1/1.full.pdf

F. A. Ran, Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity, Cell, vol.154, issue.6, pp.1380-1389, 2013.
DOI : 10.1016/j.cell.2013.08.021

URL : http://doi.org/10.1016/j.cell.2013.09.040

B. Shen, Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects, Nature Methods, vol.11, issue.4, pp.399-402, 2014.
DOI : 10.1093/bioinformatics/btq033

C. Deng and M. R. Capecchi, Reexamination of gene targeting frequency as a function of the extent of homology between the targeting vector and the target locus., Molecular and Cellular Biology, vol.12, issue.8, pp.3365-3371, 1992.
DOI : 10.1128/MCB.12.8.3365

H. Te-riele, E. R. Maandag, and A. Berns, Highly efficient gene targeting in embryonic stem cells through homologous recombination with isogenic DNA constructs., Proc. Natl. Acad. Sci. USA, pp.5128-5132, 1992.
DOI : 10.1073/pnas.89.11.5128

J. R. Chapman, M. R. Taylor, and S. J. Boulton, Playing the End Game: DNA Double-Strand Break Repair Pathway Choice, Molecular Cell, vol.47, issue.4, pp.497-510, 2012.
DOI : 10.1016/j.molcel.2012.07.029

URL : http://doi.org/10.1016/j.molcel.2012.07.029

J. Artus and M. Cohen-tannoudji, Cell cycle regulation during early mouse embryogenesis, Molecular and Cellular Endocrinology, vol.282, issue.1-2, pp.78-86, 2008.
DOI : 10.1016/j.mce.2007.11.008

URL : https://hal.archives-ouvertes.fr/pasteur-00385488

P. Hasty, J. Rivera-pérez, and A. Bradley, The length of homology required for gene targeting in embryonic stem cells., Molecular and Cellular Biology, vol.11, issue.11, pp.5586-5591, 1991.
DOI : 10.1128/MCB.11.11.5586

V. T. Chu, Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells, Nature Biotechnology, vol.3, issue.5, pp.543-548, 2015.
DOI : 10.1126/science.1231143

S. J. Orlando, 42661 | DOI: 10.1038/srep42661 35 Zinc-finger nuclease-driven targeted integration into mammalian genomes using donors with limited chromosomal homology, Nucleic Acids Research, vol.7, issue.38, pp.152-152, 2010.

M. Van-overbeek, DNA Repair Profiling Reveals Nonrandom Outcomes at Cas9-Mediated Breaks, Molecular Cell, vol.63, issue.4, pp.633-646, 2016.
DOI : 10.1016/j.molcel.2016.06.037

J. Mianné, Correction of the auditory phenotype in C57BL/6N mice via CRISPR/Cas9-mediated homology directed repair, Genome Medicine, vol.61, issue.34, p.16, 2016.
DOI : 10.1159/000368399

S. Ménoret, Homology-directed repair in rodent zygotes using Cas9 and TALEN engineered proteins, Scientific Reports, vol.23, issue.1, p.14410, 2015.
DOI : 10.1101/gr.147314.112

T. Maruyama, Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining, Nature Biotechnology, vol.3, issue.5, pp.538-542, 2015.
DOI : 10.1534/genetics.114.169771

R. M. Quadros, D. W. Harms, M. Ohtsuka, and C. B. Gurumurthy, locus using the CRISPR/Cas9 system, FEBS Open Bio, vol.393, issue.1, pp.191-197, 2015.
DOI : 10.1016/j.ydbio.2014.06.017

S. Mizuno, Simple generation of albino C57BL/6J mice with G291T mutation in the tyrosinase gene by the CRISPR/Cas9 system, Mammalian Genome, vol.154, issue.7-8, pp.327-334, 2014.
DOI : 10.1016/j.cell.2013.08.022

A. Y. Lee, -. Lloyd, and K. C. , using paired Cas9 nickase and a single DNA template in mice, FEBS Open Bio, vol.44, issue.1, pp.637-642, 2014.
DOI : 10.1038/ng.2252

URL : http://doi.org/10.1016/j.fob.2014.06.007

H. Nakao, A possible aid in targeted insertion of large DNA elements by CRISPR/Cas in mouse zygotes, genesis, vol.4, issue.2, pp.65-77, 2016.
DOI : 10.1038/srep06420

L. Wang, Large genomic fragment deletion and functional gene cassette knock-in via Cas9 protein mediated genome editing in one-cell rodent embryos, Scientific Reports, vol.339, issue.1, p.17517, 2015.
DOI : 10.1126/science.1231143

URL : http://doi.org/10.1038/srep17517

L. Zhang, Large Genomic Fragment Deletions and Insertions in Mouse Using CRISPR/Cas9, PLOS ONE, vol.21, issue.6, p.120396, 2015.
DOI : 10.1371/journal.pone.0120396.s009

URL : http://doi.org/10.1371/journal.pone.0120396

R. L. Brinster, H. Y. Chen, M. E. Trumbauer, M. K. Yagle, and R. D. Palmiter, Factors affecting the efficiency of introducing foreign DNA into mice by microinjecting eggs., Proc. Natl. Acad. Sci. USA, pp.4438-4442, 1985.
DOI : 10.1073/pnas.82.13.4438

K. Yoshimi, ssODN-mediated knock-in with CRISPR-Cas for large genomic regions in zygotes, Nature Communications, vol.41, issue.401, p.10431, 2016.
DOI : 10.1093/nar/gkt772

Y. Fu, High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells, Nature Biotechnology, vol.31, issue.9, pp.822-826, 2013.
DOI : 10.1021/bi00035a029

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3773023

P. D. Hsu, DNA targeting specificity of RNA-guided Cas9 nucleases, Nature Biotechnology, vol.49, issue.9, pp.827-832, 2013.
DOI : 10.1073/pnas.1019533108

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3969858

J. G. Doench, Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9, Nature Biotechnology, vol.34, issue.2, pp.184-191, 2016.
DOI : 10.1037//0033-2909.87.2.245

S. Q. Tsai, GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases, Nature Biotechnology, vol.5, issue.2, pp.187-197, 2015.
DOI : 10.1186/gb-2014-15-2-r34

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4320685

J. Zhou, Dual sgRNAs facilitate CRISPR/Cas9-mediated mouse genome targeting, FEBS Journal, vol.2013, issue.7, pp.1717-1725, 2014.
DOI : 10.1155/2013/270805

W. Fujii, K. Kawasaki, K. Sugiura, and K. Naito, Efficient generation of large-scale genome-modified mice using gRNA and CAS9 endonuclease, Nucleic Acids Research, vol.41, issue.20, pp.187-187, 2013.
DOI : 10.1093/nar/gkt772

V. Iyer, Off-target mutations are rare in Cas9-modified mice, Nature Methods, vol.15, issue.6, p.479, 2015.
DOI : 10.1016/j.stem.2014.06.016

J. P. Guilinger, D. B. Thompson, and D. R. Liu, Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification, Nature Biotechnology, vol.31, issue.6, pp.577-582, 2014.
DOI : 10.1093/nar/gkt716

S. Q. Tsai, Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing, Nature Biotechnology, vol.32, issue.6, pp.569-576, 2014.
DOI : 10.1093/bioinformatics/btp324

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4090141

H. Zhong, Y. Chen, Y. Li, R. Chen, and G. Mardon, CRISPR-engineered mosaicism rapidly reveals that loss of Kcnj13 function in mice mimics human disease phenotypes, Scientific Reports, vol.30, issue.1, p.8366, 2015.
DOI : 10.1080/01926230290105721

D. Oliver, S. Yuan, H. Mcswiggin, and W. Yan, Pervasive Genotypic Mosaicism in Founder Mice Derived from Genome Editing through Pronuclear Injection, PLOS ONE, vol.91, issue.2, p.129457, 2015.
DOI : 10.1371/journal.pone.0129457.s002

URL : http://doi.org/10.1371/journal.pone.0129457

B. Zetsche, S. E. Volz, and F. Zhang, A split-Cas9 architecture for inducible genome editing and transcription modulation, Nature Biotechnology, vol.33, issue.2, pp.139-142, 2015.
DOI : 10.1038/nmeth.2600

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4503468

B. P. Kleinstiver, High-fidelity CRISPR???Cas9 nucleases with no detectable genome-wide off-target effects, Nature, vol.28, issue.7587, pp.490-495, 2016.
DOI : 10.1093/bioinformatics/bts199

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4851738

I. M. Slaymaker, Rationally engineered Cas9 nucleases with improved specificity, Science, vol.520, issue.25, pp.84-88, 2015.
DOI : 10.1038/nature14299

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4714946

A. C. Komor, Y. B. Kim, M. S. Packer, J. A. Zuris, and D. R. Liu, Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage, Nature, vol.10, issue.7603, pp.420-424, 2016.
DOI : 10.1038/nmeth.2521

D. Paquet, Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9, Nature, vol.488, issue.7601, pp.125-129, 2016.
DOI : 10.1038/nature11283

C. D. Richardson, G. J. Ray, M. A. Dewitt, G. L. Curie, and J. Corn, Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA, Nature Biotechnology, vol.69, issue.3, pp.339-344, 2016.
DOI : 10.1016/B978-0-12-801185-0.00001-5