M. Zeng, Seroepidemiology of Enterovirus 71 infection prior to the 2011 season in children in Shanghai, Journal of Clinical Virology, vol.53, issue.4, pp.285-289, 2012.
DOI : 10.1016/j.jcv.2011.12.025

URL : https://hal.archives-ouvertes.fr/pasteur-00681113

W. Xing, Hand, foot, and mouth disease in China, 2008???12: an epidemiological study, The Lancet Infectious Diseases, vol.14, issue.4, pp.308-318, 2008.
DOI : 10.1016/S1473-3099(13)70342-6

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4035015

Y. F. Hu, Complete Genome Analysis of Coxsackievirus A2, A4, A5, and A10 Strains Isolated from Hand, Foot, and Mouth Disease Patients in China Revealing Frequent Recombination of Human Enterovirus A, Journal of Clinical Microbiology, vol.49, issue.7, pp.2426-2434, 2011.
DOI : 10.1128/JCM.00007-11

M. S. Oberste, Enteroviruses 76, 89, 90 and 91 represent a novel group within the species Human enterovirus A, Journal of General Virology, vol.86, issue.2, pp.445-451, 2005.
DOI : 10.1099/vir.0.80475-0

M. K. Ramirez-fort, Coxsackievirus A6 associated hand, foot and mouth disease in adults: Clinical presentation and review of the literature, Journal of Clinical Virology, vol.60, issue.4, pp.381-386, 2014.
DOI : 10.1016/j.jcv.2014.04.023

F. Dotta and G. Sebastiani, Enteroviral Infections and Development of Type 1 Diabetes: The Brothers Karamazov Within the CVBs, Diabetes, vol.63, issue.2, pp.384-386, 2014.
DOI : 10.2337/db13-1441

K. L. Tyler, Rationale for the Evaluation of Fluoxetine in the Treatment of Enterovirus D68-Associated Acute Flaccid Myelitis, JAMA Neurology, vol.72, issue.5, pp.493-4944625, 2015.
DOI : 10.1001/jamaneurol.2014.4625

R. Tokarz, Worldwide emergence of multiple clades of enterovirus 68, Journal of General Virology, vol.93, issue.Pt_9, pp.43935-43935, 1952.
DOI : 10.1099/vir.0.043935-0

A. D. Webster, Pleconaril???an advance in the treatment of enteroviral infection in immuno-compromised patients, Journal of Clinical Virology, vol.32, issue.1, pp.1-6006, 2005.
DOI : 10.1016/j.jcv.2004.06.006

A. Tijsma, The Capsid Binder Vapendavir and the Novel Protease Inhibitor SG85 Inhibit Enterovirus 71 Replication, Antimicrobial Agents and Chemotherapy, vol.58, issue.11, pp.6990-699203328, 2014.
DOI : 10.1128/AAC.03328-14

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4249361

P. Plevka, Structure of human enterovirus 71 in complex with a capsid-binding inhibitor, Proceedings of the National Academy of Sciences, vol.5, issue.7, pp.5463-54671222379110, 2013.
DOI : 10.1371/journal.pbio.0050183

P. Ren, The approved pediatric drug suramin identified as a clinical candidate for the treatment of EV71 infection[mdash] suramin inhibits EV71 infection in vitro and in vivo, Emerg Microbes Infect, vol.3, issue.62, p.60, 2014.

C. W. Tan, C. L. Poh, I. Sam, and Y. Chan, Enterovirus 71 Uses Cell Surface Heparan Sulfate Glycosaminoglycan as an Attachment Receptor, Journal of Virology, vol.87, issue.1, pp.611-620, 2013.
DOI : 10.1128/JVI.02226-12

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3536405

Y. Wang, J. Qing, Y. Sun, and Z. Rao, Suramin inhibits EV71 infection, Antiviral Research, vol.103, pp.1-6008, 2014.
DOI : 10.1016/j.antiviral.2013.12.008

M. Arita, T. Wakita, and H. Shimizu, Characterization of pharmacologically active compounds that inhibit poliovirus and enterovirus 71 infectivity, Journal of General Virology, vol.89, issue.10, pp.2518-2530002915, 2008.
DOI : 10.1099/vir.0.2008/002915-0

Y. Wang, Peptidyl Aldehyde NK-1.8k Suppresses Enterovirus 71 and Enterovirus 68 Infection by Targeting Protease 3C, Antimicrobial Agents and Chemotherapy, vol.59, issue.5, pp.2636-2646, 2015.
DOI : 10.1128/AAC.00049-15

G. Lu, Enterovirus 71 and Coxsackievirus A16 3C Proteases: Binding to Rupintrivir and Their Substrates and Anti-Hand, Foot, and Mouth Disease Virus Drug Design, Journal of Virology, vol.85, issue.19, pp.10319-1033100787, 2011.
DOI : 10.1128/JVI.00787-11

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3196414

J. Wang, Crystal Structures of Enterovirus 71 3C Protease Complexed with Rupintrivir Reveal the Roles of Catalytically Important Residues, Journal of Virology, vol.85, issue.19, pp.10021-10030, 2011.
DOI : 10.1128/JVI.05107-11

X. Zhang, Rupintrivir is a promising candidate for treating severe cases of enterovirus-71 infection: Evaluation of antiviral efficacy in a murine infection model, Antiviral Research, vol.97, issue.3, pp.264-269, 2013.
DOI : 10.1016/j.antiviral.2012.12.029

C. Wang, Antiviral Potential of a Novel Compound CW-33 against Enterovirus A71 via Inhibition of Viral 2A Protease, Viruses, vol.6, issue.6, pp.10-7062764, 2015.
DOI : 10.3851/IMP1720

N. Falah, Blocking human enterovirus 71 replication by targeting viral 2A protease, Journal of Antimicrobial Chemotherapy, vol.67, issue.12, pp.2865-2869, 2012.
DOI : 10.1093/jac/dks304

J. Liu, Lycorine reduces mortality of human enterovirus 71-infected mice by inhibiting virus replication, Virology Journal, vol.8, issue.1, p.483, 2011.
DOI : 10.1016/0168-1702(95)00087-9

Q. Gao, Antienterovirus Activity That Targets Nonstructural Protein 3A, Antimicrobial Agents and Chemotherapy, vol.59, issue.5, pp.2654-2665, 2015.
DOI : 10.1128/AAC.05108-14

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4394834

J. R. Strating, Itraconazole Inhibits Enterovirus Replication by Targeting the Oxysterol-Binding Protein, Cell Reports, vol.10, issue.4, pp.600-615, 2015.
DOI : 10.1016/j.celrep.2014.12.054

URL : http://doi.org/10.1016/j.celrep.2014.12.054

M. Arita, T. Wakita, and H. Shimizu, Cellular kinase inhibitors that suppress enterovirus replication have a conserved target in viral protein 3A similar to that of enviroxime, Journal of General Virology, vol.90, issue.8, pp.1869-1879, 2009.
DOI : 10.1099/vir.0.012096-0

M. Arita, Y. Takebe, T. Wakita, and H. Shimizu, A bifunctional anti-enterovirus compound that inhibits replication and the early stage of enterovirus 71 infection, Journal of General Virology, vol.91, issue.11, pp.2734-2744, 2010.
DOI : 10.1099/vir.0.023374-0

L. Shang, An adenosine nucleoside analogue NITD008 inhibits EV71 proliferation, Antiviral Research, vol.112, pp.47-58, 2014.
DOI : 10.1016/j.antiviral.2014.10.009

C. Deng, Inhibition of Enterovirus 71 by Adenosine Analog NITD008, Journal of Virology, vol.88, issue.20, pp.11915-1192301207, 2014.
DOI : 10.1128/JVI.01207-14

L. Van-der-linden, The RNA Template Channel of the RNA-Dependent RNA Polymerase as a Target for Development of Antiviral Therapy of Multiple Genera within a Virus Family, PLOS Pathogens, vol.60, issue.3, 2015.
DOI : 10.1371/journal.ppat.1004733.s010

URL : https://hal.archives-ouvertes.fr/hal-01219259

H. J. Thibaut, Binding of Glutathione to Enterovirus Capsids Is Essential for Virion Morphogenesis, PLoS Pathogens, vol.25, issue.4, 2014.
DOI : 10.1371/journal.ppat.1004039.s004

J. Qing, Cyclophilin A Associates with Enterovirus-71 Virus Capsid and Plays an Essential Role in Viral Infection as an Uncoating Regulator, PLoS Pathogens, vol.284, issue.10, 2014.
DOI : 10.1371/journal.ppat.1004422.s004

Y. Nishimura, Human P-selectin glycoprotein ligand-1 is a functional receptor for enterovirus 71, Nature Medicine, vol.134, issue.7, pp.794-797, 2009.
DOI : 10.1099/0022-1317-83-6-1367

Y. Nishimura, T. Wakita, and H. Shimizu, Tyrosine Sulfation of the Amino Terminus of PSGL-1 Is Critical for Enterovirus 71 Infection, PLoS Pathogens, vol.148, issue.11, p.1001174, 2010.
DOI : 10.1371/journal.ppat.1001174.s002

Y. Nishimura, Enterovirus 71 Binding to PSGL-1 on Leukocytes: VP1-145 Acts as a Molecular Switch to Control Receptor Interaction, PLoS Pathogens, vol.25, issue.7, 2013.
DOI : 10.1371/journal.ppat.1003511.s004

S. Yamayoshi, Scavenger receptor B2 is a cellular receptor for enterovirus 71, Nature Medicine, vol.3, issue.7, pp.798-801, 2009.
DOI : 10.1111/j.1348-0421.2002.tb02743.x

S. Yamayoshi, Human SCARB2-Dependent Infection by Coxsackievirus A7, A14, and A16 and Enterovirus 71, Journal of Virology, vol.86, issue.10, pp.5686-569600020, 2012.
DOI : 10.1128/JVI.00020-12

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3347270

M. Dang, Molecular mechanism of SCARB2-mediated attachment and uncoating of EV71, Protein & Cell, vol.105, issue.3, pp.692-703, 2014.
DOI : 10.1073/pnas.0807848105

X. Wang, A sensor-adaptor mechanism for enterovirus uncoating from structures of EV71, Nature Structural & Molecular Biology, vol.14, issue.4, 2012.
DOI : 10.1006/jmbi.1993.1351

N. Du, Cell Surface Vimentin Is an Attachment Receptor for Enterovirus 71, Journal of Virology, vol.88, issue.10, pp.5816-583303826, 2014.
DOI : 10.1128/JVI.03826-13

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4019121

S. Yang, Y. Chou, C. Wu, and M. Ho, Annexin II Binds to Capsid Protein VP1 of Enterovirus 71 and Enhances Viral Infectivity, Journal of Virology, vol.85, issue.22, pp.11809-11820, 2011.
DOI : 10.1128/JVI.00297-11

S. Yuan, ABSTRACT, Journal of Virology, vol.90, issue.2, pp.10-1128, 2015.
DOI : 10.1128/JVI.02482-15

D. Makari, K. M. Jensen, B. Harris, H. S. Jafri, and . Randomized, Randomized, Double-Blind Study of the Safety of the Liquid Versus Lyophilized Formulation of Palivizumab in Premature Infants and Children with Chronic Lung Disease of Prematurity, Infectious Diseases and Therapy, vol.125, issue.2, pp.339-347, 2014.
DOI : 10.1542/peds.2008-1036

C. Kataoka, The Role of VP1 Amino Acid Residue 145 of Enterovirus 71 in Viral Fitness and Pathogenesis in a Cynomolgus Monkey Model, PLOS Pathogens, vol.53, issue.3, 2015.
DOI : 10.1371/journal.ppat.1005033.s008

C. W. Tan, I. C. Sam, V. S. Lee, H. V. Wong, and Y. Chan, VP1 residues around the five-fold axis of enterovirus A71 mediate heparan sulfate interaction, Virology, vol.501, pp.79-87, 2017.
DOI : 10.1016/j.virol.2016.11.009

S. Chang, Genetic characterization of enterovirus 71 isolated from patients with severe disease by comparative analysis of complete genomes, Journal of Medical Virology, vol.47, issue.6, pp.931-939, 2012.
DOI : 10.1002/jmv.1890470209

Z. Zaini and P. Mcminn, A single mutation in capsid protein VP1 (Q145E) of a genogroup C4 strain of human enterovirus 71 generates a mouse-virulent phenotype, Journal of General Virology, vol.93, issue.Pt_9, 1935.
DOI : 10.1099/vir.0.043893-0

C. L. Gardner, Deliberate Attenuation of Chikungunya Virus by Adaptation to Heparan Sulfate-Dependent Infectivity: A Model for Rational Arboviral Vaccine Design, PLoS Neglected Tropical Diseases, vol.75, issue.457, 2014.
DOI : 10.1371/journal.pntd.0002719.s003

J. T. Roehrig, Mutation of the dengue virus type 2 envelope protein heparan sulfate binding sites or the domain III lateral ridge blocks replication in Vero cells prior to membrane fusion, Virology, vol.441, issue.2, pp.114-125011, 2013.
DOI : 10.1016/j.virol.2013.03.011

J. Jiang, Hepatitis C Virus Attachment Mediated by Apolipoprotein E Binding to Cell Surface Heparan Sulfate, Journal of Virology, vol.86, issue.13, pp.7256-726707222, 2012.
DOI : 10.1128/JVI.07222-11

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3416335

S. M. De-boer, Heparan Sulfate Facilitates Rift Valley Fever Virus Entry into the Cell, Journal of Virology, vol.86, issue.24, pp.13767-1377101364, 2012.
DOI : 10.1128/JVI.01364-12

M. Tamura, K. Natori, M. Kobayashi, T. Miyamura, and N. Takeda, Genogroup II Noroviruses Efficiently Bind to Heparan Sulfate Proteoglycan Associated with the Cellular Membrane, Journal of Virology, vol.78, issue.8, pp.3817-3826, 2004.
DOI : 10.1128/JVI.78.8.3817-3826.2004

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC374263

E. Trybala, J. Liljeqvist, B. Svennerholm, and T. Bergström, Herpes Simplex Virus Types 1 and 2 Differ in Their Interaction with Heparan Sulfate, Journal of Virology, vol.74, issue.19, pp.9106-9114, 2000.
DOI : 10.1128/JVI.74.19.9106-9114.2000

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC102109/pdf

C. Sureau and J. Salisse, A conformational heparan sulfate binding site essential to infectivity overlaps with the conserved hepatitis B virus A-determinant, Hepatology, vol.35, issue.Suppl. 1, pp.985-994, 2013.
DOI : 10.1016/S0161-5890(98)00110-2

B. J. Connell and H. Lortat-jacob, Human Immunodeficiency Virus and Heparan Sulfate: From Attachment to Entry Inhibition, Frontiers in Immunology, vol.4, p.385, 2013.
DOI : 10.3389/fimmu.2013.00385

URL : https://hal.archives-ouvertes.fr/hal-00924124

H. Pourianfar, K. Kirk, and L. Grollo, Initial evidence on differences among Enterovirus 71, Coxsackievirus A16 and Coxsackievirus B4 in binding to cell surface heparan sulphate, VirusDisease, vol.24, issue.3, pp.277-284, 2014.
DOI : 10.1128/JVI.77.18.10071-10077.2003

N. J. Mcleish, Ç. H. Williams, D. Kaloudas, M. M. Roivainen, and G. Stanway, Symmetry-Related Clustering of Positive Charges Is a Common Mechanism for Heparan Sulfate Binding in Enteroviruses, Journal of Virology, vol.86, issue.20, pp.11163-1117000640, 2012.
DOI : 10.1128/JVI.00640-12

A. E. Zautner, B. Jahn, E. Hammerschmidt, P. Wutzler, and M. Schmidtke, N- and 6-O-Sulfated Heparan Sulfates Mediate Internalization of Coxsackievirus B3 Variant PD into CHO-K1 Cells, Journal of Virology, vol.80, issue.13, pp.6629-6636, 2006.
DOI : 10.1128/JVI.01988-05

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1488958

S. Israelsson, Studies of Echovirus 5 interactions with the cell surface: Heparan sulfate mediates attachment to the host cell, Virus Research, vol.151, issue.2, pp.170-176, 2010.
DOI : 10.1016/j.virusres.2010.05.001

I. G. Goodfellow, A. B. Sioofy, R. M. Powell, and D. J. Evans, Echoviruses Bind Heparan Sulfate at the Cell Surface, Journal of Virology, vol.75, issue.10, pp.4918-4921, 2001.
DOI : 10.1128/JVI.75.10.4918-4921.2001

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC114248

Y. Nishimura, The Suramin Derivative NF449 Interacts with the 5-fold Vertex of the Enterovirus A71 Capsid to Prevent Virus Attachment to PSGL-1 and Heparan Sulfate, PLOS Pathogens, vol.336, issue.6086, 2015.
DOI : 10.1371/journal.ppat.1005184.s004