A. Ahmed and H. Hurd, Immune stimulation and malaria infection impose reproductive costs in Anopheles gambiae via follicular apoptosis, Microbes and Infection, vol.8, issue.2, pp.308-315, 2006.
DOI : 10.1016/j.micinf.2005.06.026

J. Balanyá, J. Oller, R. Huey, G. Gilchrist, and L. Serra, Global Genetic Change Tracks Global Climate Warming in Drosophila subobscura, Science, vol.313, issue.5794, pp.1773-1775, 2006.
DOI : 10.1126/science.1131002

S. Bhatt, D. Weiss, E. Cameron, D. Bisanzio, B. Mappin et al., The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015, Nature, vol.385, issue.7572, pp.207-211, 2000.
DOI : 10.1016/S0140-6736(14)61682-2

M. Bockarie, M. Service, G. Barnish, G. Maude, and B. Greenwood, Malaria in a rural area of Sierra Leone. III. Vector ecology and disease transmission, Annals of Tropical Medicine & Parasitology, vol.65, issue.3, pp.251-262, 1994.
DOI : 10.1080/00034983.1946.11685297

M. Bockarie, M. Service, Y. Touré, S. Traoré, G. Barnish et al., The ecology and behaviour of the forest form of Anopheles gambiae s.s, Parassitologia, vol.35, pp.5-8, 1993.

T. Bousema, J. Griffin, R. Sauerwein, D. Smith, T. Churcher et al., Hitting Hotspots: Spatial Targeting of Malaria for Control and Elimination, PLoS Medicine, vol.7, issue.1, p.22303287, 2012.
DOI : 10.1371/journal.pmed.1001165.t001

O. Brady, H. Godfray, A. Tatem, P. Gething, J. Cohen et al., Vectorial capacity and vector control: reconsidering sensitivity to parameters for malaria elimination, Transactions of The Royal Society of Tropical Medicine and Hygiene, vol.110, issue.2, pp.107-117, 2016.
DOI : 10.1093/trstmh/trv113

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4731004

B. Brooke, R. Hunt, F. Chandre, P. Carnevale, and M. Coetzee, (Diptera: Culicidae), Journal of Medical Entomology, vol.39, issue.4, pp.568-573, 2002.
DOI : 10.1603/0022-2585-39.4.568

A. Caccone, G. Min, and J. Powell, Multiple origins of cytologically identical chromosome inversions in the Anopheles gambiae complex, Genetics, vol.150, pp.807-814, 1998.

C. Cheng, B. White, C. Kamdem, K. Mockaitis, C. Costantini et al., Ecological Genomics of Anopheles gambiae Along a Latitudinal Cline: A Population-Resequencing Approach, Genetics, vol.190, issue.4, pp.1417-1432, 2012.
DOI : 10.1534/genetics.111.137794

M. Coetzee, R. Hunt, R. Wilkerson, D. Torre, A. Coulibaly et al., Anopheles coluzzii and Anopheles amharicus, new members of the Anopheles gambiae complex, Zootaxa, vol.3619, pp.246-274, 2013.

M. Coluzzi, A. Sabatini, V. Petrarca, D. Deco, and M. , Behavioural divergences between mosquitoes with different inversion karyotypes in polymorphic populations of the Anopheles gambiae complex, Nature, vol.22, issue.5605, pp.832-833, 1977.
DOI : 10.1101/SQB.1959.024.01.020

M. Coluzzi, A. Sabatini, V. Petrarca, D. Deco, and M. , Chromosomal differentiation and adaptation to human environments in the Anopheles gambiae complex, Transactions of the Royal Society of Tropical Medicine and Hygiene, vol.73, issue.5, pp.483-497, 1979.
DOI : 10.1016/0035-9203(79)90036-1

R. Corbett-detig and D. Hartl, Population genomics of inversion polymorphisms in Drosophila Melanogaster, PLoS Genetics, vol.8, p.23284285, 2012.

C. Costantini and M. Diallo, Preliminary lack of evidence for simian odour preferences of savanna populations of Anopheles gambiae and other malaria vectors, Parassitologia, vol.43, pp.179-182, 2001.

B. Coulibaly, R. Kone, M. Barry, B. Emerson, M. Coulibaly et al., Malaria vector populations across ecological zones in Guinea Conakry and Mali, West Africa, Malaria Journal, vol.53, issue.1, pp.191-201, 2016.
DOI : 10.1175/JAMC-D-13-0270.1

URL : http://doi.org/10.1186/s12936-016-1242-5

J. Crawford, M. Riehle, K. Markianos, E. Bischoff, W. Guelbeogo et al., infection, Molecular Ecology, vol.143, issue.Pt 5, pp.1494-1510, 2016.
DOI : 10.1101/gr.157388.113

A. Diabaté, R. Dabiré, K. Heidenberger, J. Crawford, W. Lamp et al., Evidence for divergent selection between the molecular forms of Anopheles gambiae: role of predation, BMC Evolutionary Biology, vol.8, issue.1, p.18190719, 2008.
DOI : 10.1186/1471-2148-8-5

M. Diatta, A. Spiegel, L. Lochouarn, and D. Fontenille, Similar feeding preferences of Anopheles gambiae and A. arabiensis in Senegal, Transactions of the Royal Society of Tropical Medicine and Hygiene, vol.92, issue.3, pp.270-272, 1998.
DOI : 10.1016/S0035-9203(98)91005-7

Y. Dong and G. Dimopoulos, Fibrinogen-related Proteins Provide Expanded Pattern Recognition Capacity against Bacteria and Malaria Parasites, Journal of Biological Chemistry, vol.38, issue.15, pp.9835-9844, 2009.
DOI : 10.1016/j.imbio.2006.01.001

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2665105

J. Duchemin, J. Tsy, P. Rabarison, J. Roux, M. Coluzzi et al., Zoophily of Anopheles arabiensis and An. gambiae in Madagascar demonstrated by odour-baited entry traps, Medical and Veterinary Entomology, vol.60, issue.1, pp.50-57, 2001.
DOI : 10.1051/parasite/199267126

C. Fanello, F. Santolamazza, and A. Della-torre, Simultaneous identification of species and molecular forms of the Anopheles gambiae complex by PCR-RFLP, Medical and Veterinary Entomology, vol.3, issue.4, pp.461-464, 2002.
DOI : 10.1046/j.0962-1075.2001.00306.x

M. Farenhorst and B. Knols, A novel method for standardized application of fungal spore coatings for mosquito exposure bioassays, Malaria Journal, vol.9, issue.1, pp.27-37, 2010.
DOI : 10.1186/1475-2875-9-27

H. Ferguson and A. Read, Why is the effect of malaria parasites on mosquito survival still unresolved?, Trends in Parasitology, vol.18, issue.6, pp.256-261, 2002.
DOI : 10.1016/S1471-4922(02)02281-X

U. Fillinger and S. Lindsay, Larval source management for malaria control in Africa: myths and reality, Malaria Journal, vol.10, issue.1, p.22166144, 2011.
DOI : 10.1016/S1471-4922(02)02367-X

URL : http://doi.org/10.1186/1475-2875-10-353

R. Fisher, Statistical Methods for Research Workers, 1925.
DOI : 10.1007/978-1-4612-4380-9_6

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2984635/pdf

C. Fouet, E. Gray, N. Besansky, and C. Costantini, Adaptation to Aridity in the Malaria Mosquito Anopheles gambiae: Chromosomal Inversion Polymorphism and Body Size Influence Resistance to Desiccation, PLoS ONE, vol.12, issue.113, p.22514674, 2012.
DOI : 10.1371/journal.pone.0034841.s007

R. Fryxell, C. Nieman, A. Fofana, Y. Lee, S. Traoré et al., Differential Plasmodium falciparum infection of Anopheles gambiae s.s. molecular and chromosomal forms in Mali, Malaria Journal, vol.11, issue.1, pp.133-143, 2012.
DOI : 10.1016/0035-9203(94)90204-6

C. Garrett-jones, P. Boreham, and C. Pant, Feeding habits of anophelines (Diptera: Culicidae) in 1971???78, with reference to the human blood index: a review, Bulletin of Entomological Research, vol.15, issue.02, pp.165-185, 1980.
DOI : 10.1016/0035-9203(74)90035-2

M. Gillies and M. Coetzee, A Supplement to the Anophelinae of Africa South of the Sahara Publications of The South African Institute for Medical Research, 1987.

M. Gillies, Studies of House Leaving and Outside Resting of Anopheles gambiae Giles and Anopheles funestus Giles in East Africa. I.???The Outside Resting Population, Bulletin of Entomological Research, vol.5, issue.02, pp.361-371, 1954.
DOI : 10.2307/4584357

M. Gillies, The problem of exophily in Anopheles gambiae, Bulletin of the World Health Organization, vol.15, pp.437-449, 1956.

A. Gné-mé, W. Guelbé-ogo, M. Riehle, A. Sanou, A. Traoré et al., Equivalent susceptibility of Anopheles gambiae M and S molecular forms and Anopheles arabiensis to Plasmodium falciparum infection in Burkina Faso, Malaria Journal, vol.12, issue.1, pp.204-214, 2013.
DOI : 10.1186/1475-2875-6-100

V. Gordicho, J. Vicente, C. Sousa, B. Caputo, M. Pombi et al., First report of an exophilic Anopheles arabiensis population in Bissau City, Guinea-Bissau: recent introduction or sampling bias?, Malaria Journal, vol.13, issue.1, pp.423-433, 2014.
DOI : 10.1186/1756-3305-6-114

C. Harris, L. Lambrechts, F. Rousset, L. Abate, S. Nsango et al., Polymorphisms in Anopheles gambiae Immune Genes Associated with Natural Resistance to Plasmodium falciparum, PLoS Pathogens, vol.21, issue.9, p.20862317, 2010.
DOI : 10.1371/journal.ppat.1001112.s004

S. Hay, D. Smith, and R. Snow, Measuring malaria endemicity from intense to interrupted transmission, The Lancet Infectious Diseases, vol.8, issue.6, pp.369-378, 2008.
DOI : 10.1016/S1473-3099(08)70069-0

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2653619

R. Hijmans, S. Cameron, J. Parra, P. Jones, and A. Jarvis, Very high resolution interpolated climate surfaces for global land areas, International Journal of Climatology, vol.18, issue.15, pp.1965-1978, 2005.
DOI : 10.1002/joc.1276

A. Horton, Y. Lee, C. Coulibaly, V. Rashbrook, A. Cornel et al., Identification of three single nucleotide polymorphisms in Anopheles gambiae immune signaling genes that are associated with natural Plasmodium falciparum infection, Malaria Journal, vol.9, issue.1, pp.160-170, 2010.
DOI : 10.1186/1475-2875-9-160

L. Huynh, D. Maney, and J. Thomas, Chromosome-wide linkage disequilibrium caused by an inversion polymorphism in the white-throated sparrow (Zonotrichia albicollis), Heredity, vol.57, issue.4, pp.537-546, 2011.
DOI : 10.1186/gb-2008-9-6-r98

M. Joron, L. Frezal, R. Jones, N. Chamberlain, S. Lee et al., Chromosomal rearrangements maintain a polymorphic supergene controlling butterfly mimicry, Nature, vol.132, issue.7363, pp.203-206, 1038.
DOI : 10.1093/bioinformatics/btp187

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3717454

E. Kaplan and P. Meier, Nonparametric Estimation from Incomplete Observations, Journal of the American Statistical Association, vol.37, issue.282, pp.457-481, 1958.
DOI : 10.1214/aoms/1177731566

G. Killeen, U. Fillinger, and B. Knols, Advantages of larval control for african malaria vectors: low mobility and behavioural responsiveness of immature mosquito stages allow high effective coverage, Malaria Journal, vol.1, issue.8, p.12153709, 2002.

S. Lamichhaney, G. Fan, F. Widemo, U. Gunnarsson, D. Thalmann et al., Structural genomic changes underlie alternative reproductive strategies in the ruff (Philomachus pugnax), Nature Genetics, vol.5, issue.1, pp.84-88, 2016.
DOI : 10.4161/fly.19695

J. Langhorne, F. Ndungu, A. Sponaas, and K. Marsh, Immunity to malaria: more questions than answers, Nature Immunology, vol.117, issue.7, pp.725-732, 2008.
DOI : 10.4049/jimmunol.173.6.4066

S. Luckhart, K. Li, R. Dunton, E. Lewis, A. Crampton et al., Anopheles gambiae immune gene variants associated with natural Plasmodium infection, Molecular and Biochemical Parasitology, vol.128, issue.1, pp.83-86, 2003.
DOI : 10.1016/S0166-6851(03)00016-1

K. Markianos, E. Bischoff, C. Mitri, W. Guelbeogo, A. Gneme et al., Genetic Structure of a Local Population of the Anopheles gambiae Complex in Burkina Faso, PLOS ONE, vol.298, issue.5591, p.26731649, 2016.
DOI : 10.1371/journal.pone.0145308.s006

D. Matoke-muhia, J. Gimnig, L. Kamau, J. Shililu, M. Bayoh et al., Decline in frequency of the 2La chromosomal inversion in Anopheles gambiae (s.s.) in Western Kenya: correlation with increase in ownership of insecticide-treated bed nets, Parasites & Vectors, vol.49, issue.1, pp.334-344, 2016.
DOI : 10.1093/ije/dys108

A. Miles, N. Harding, G. Botta, C. Clarkson, T. Antao et al., Natural diversity of the malaria vector Anopheles gambiae, 2016.
DOI : 10.1101/096289

C. Mitri, E. Bischoff, E. Takashima, M. Williams, K. Eiglmeier et al., An Evolution-Based screen for genetic differentiation between Anopheles Sister Taxa enriches for detection of functional immune factors, PLOS Pathogens, vol.11, p.26633695, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01247471

C. Mitri, J. Jacques, I. Thiery, M. Riehle, J. Xu et al., Fine Pathogen Discrimination within the APL1 Gene Family Protects Anopheles gambiae against Human and Rodent Malaria Species, PLoS Pathogens, vol.137, issue.9, p.19750215, 2009.
DOI : 10.1371/journal.ppat.1000576.s004

URL : http://doi.org/10.1371/journal.ppat.1000576

C. Mitri, K. Markianos, W. Guelbeogo, E. Bischoff, A. Gneme et al., The kdr-bearing haplotype and susceptibility to Plasmodium falciparum in Anopheles gambiae: genetic correlation and functional testing, Malaria Journal, vol.6, issue.1, pp.391-401, 2015.
DOI : 10.1371/journal.pone.0020318

S. Munga, N. Minakawa, G. Zhou, O. Barrack, A. Githeko et al., Effects of Larval Competitors and Predators on Oviposition Site Selection of <I>Anopheles gambiae</I> Sensu Stricto, Journal of Medical Entomology, vol.43, issue.2, pp.221-224, 2006.
DOI : 10.1603/0022-2585(2006)043[0221:EOLCAP]2.0.CO;2

K. Ng-'habi, C. Meneses, A. Cornel, M. Slotman, B. Knols et al., Clarification of anomalies in the application of a 2La molecular karyotyping method for the malaria vector Anopheles gambiae, Parasites & Vectors, vol.1, issue.1, pp.45-55, 2008.
DOI : 10.1186/1756-3305-1-45

L. Nguyen, H. Schmidt, V. Haeseler, A. Minh, and B. , IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies, Molecular Biology and Evolution, vol.32, issue.1, pp.268-274, 2015.
DOI : 10.1093/molbev/msu300

URL : https://academic.oup.com/mbe/article-pdf/32/1/268/13171186/msu300.pdf

O. Niaré, K. Markianos, J. Volz, F. Oduol, A. Touré et al., Genetic Loci Affecting Resistance to Human Malaria Parasites in a West African Mosquito Vector Population, Science, vol.298, issue.5591, pp.213-216, 2002.
DOI : 10.1126/science.1073420

H. Nishikawa, T. Iijima, R. Kajitani, J. Yamaguchi, T. Ando et al., A genetic mechanism for female-limited Batesian mimicry in Papilio butterfly, Nature Genetics, vol.10, issue.4, pp.405-409, 2015.
DOI : 10.1186/gb-2009-10-3-r25

O. Loughlin, S. Magesa, S. Mbogo, C. Mosha, F. Midega et al., Genomic Analyses of Three Malaria Vectors Reveals Extensive Shared Polymorphism but Contrasting Population Histories, Molecular Biology and Evolution, vol.31, issue.4, pp.889-902, 2014.
DOI : 10.1093/molbev/msu040

D. Obbard, Y. Linton, F. Jiggins, G. Yan, and T. Little, Population genetics of Plasmodium resistance genes in Anopheles gambiae: no evidence for strong selection, Molecular Ecology, vol.13, issue.16, pp.3497-3510, 2007.
DOI : 10.1126/science.276.5311.425

D. Obbard, J. Welch, and T. Little, Inferring selection in the Anopheles gambiae species complex: an example from immune-related serine protease inhibitors, Malaria Journal, vol.8, issue.1, p.117, 2009.
DOI : 10.1186/1475-2875-8-117

E. Paradis, C. J. Strimmer, and K. , APE: Analyses of Phylogenetics and Evolution in R language, Bioinformatics, vol.20, issue.2, pp.289-290, 2004.
DOI : 10.1093/bioinformatics/btg412

H. Pates, W. Takken, K. Stuke, and C. Curtis, Differential behaviour of Anopheles gambiae sensu stricto (Diptera: Culicidae) to human and cow odours in the laboratory, Bulletin of Entomological Research, vol.200, issue.04, pp.289-296, 2001.
DOI : 10.1017/S0007485300027322

V. Petrarca and J. Beier, Intraspecific Chromosomal Polymorphism in the Anopheles Gambiae Complex as a Factor Affecting Malaria Transmission in the Kisumu Area of Kenya, The American Journal of Tropical Medicine and Hygiene, vol.46, issue.2, pp.229-237, 1992.
DOI : 10.4269/ajtmh.1992.46.229

G. Pringle, A quantitative study of naturally-acquired malaria infections in Anopheles Gambiae and Anopheles funestus in a highly malarious area of East Africa, Transactions of the Royal Society of Tropical Medicine and Hygiene, vol.60, issue.5, pp.626-632, 1966.
DOI : 10.1016/0035-9203(66)90009-5

F. Prugnolle, P. Durand, K. Jacob, F. Razakandrainibe, C. Arnathau et al., A comparison of Anopheles gambiae and Plasmodium falciparum genetic structure over space and time, Microbes and Infection, vol.10, issue.3, pp.269-275, 2008.
DOI : 10.1016/j.micinf.2007.12.021

URL : https://hal.archives-ouvertes.fr/halsde-00418501

R. Core-teamwww, F. Razakandrainibe, P. Durand, J. Koella, D. Meeü-s et al., R: a language and environment for statistical computingClonal" population structure of the malaria agent Plasmodium falciparum in high-infection regions, PNAS, vol.102, pp.17388-17393, 2005.

M. Riehle, W. Guelbeogo, A. Gneme, K. Eiglmeier, I. Holm et al., A Cryptic Subgroup of Anopheles gambiae Is Highly Susceptible to Human Malaria Parasites, Science, vol.68, issue.4, pp.596-598, 2011.
DOI : 10.1016/0035-9203(74)90035-2

M. Riehle, K. Markianos, O. Niaré, J. Xu, J. Li et al., Natural Malaria Infection in Anopheles gambiae Is Regulated by a Single Genomic Control Region, Science, vol.312, issue.5773, pp.577-579, 2006.
DOI : 10.1126/science.1124153

M. Riehle, J. Xu, B. Lazzaro, S. Rottschaefer, B. Coulibaly et al., Anopheles gambiae APL1 Is a Family of Variable LRR Proteins Required for Rel1-Mediated Protection from the Malaria Parasite, Plasmodium berghei, PLoS ONE, vol.137, issue.11, 2008.
DOI : 10.1371/journal.pone.0003672.s001

V. Robert, J. Verhave, and P. Carnevale, Plasmodium falciparum infection does not increase the precocious mortality rate of Anopheles gambiae, Transactions of the Royal Society of Tropical Medicine and Hygiene, vol.84, issue.3, pp.346-347, 1990.
DOI : 10.1016/0035-9203(90)90309-3

I. Sharakhov, B. White, M. Sharakhova, J. Kayondo, N. Lobo et al., Breakpoint structure reveals the unique origin of an interspecific chromosomal inversion (2La) in the Anopheles gambiae complex, Proceedings of the National Academy of Sciences, vol.110, issue.1-4, pp.6258-6262, 2006.
DOI : 10.1159/000084979

T. Smith, A. Ross, N. Maire, C. Rogier, J. Trape et al., AN EPIDEMIOLOGIC MODEL OF THE INCIDENCE OF ACUTE ILLNESS IN PLASMODIUM FALCIPARUM MALARIA, The American Journal of Tropical Medicine and Hygiene, vol.75, issue.2_suppl, pp.56-62, 2006.
DOI : 10.4269/ajtmh.2006.75.56

H. Stefansson, A. Helgason, G. Thorleifsson, V. Steinthorsdottir, G. Masson et al., A common inversion under selection in Europeans, Nature Genetics, vol.52, issue.2, pp.129-137, 1038.
DOI : 10.1002/ana.410410222

E. Suh, D. Choe, A. Saveer, and L. Zwiebel, Suboptimal Larval Habitats Modulate Oviposition of the Malaria Vector Mosquito Anopheles coluzzii, PLOS ONE, vol.12, issue.7285, pp.26900-947, 2016.
DOI : 10.1371/journal.pone.0149800.s005

M. Thomas and A. Read, Can fungal biopesticides control malaria?, Nature Reviews Microbiology, vol.54, issue.5, pp.377-383, 2007.
DOI : 10.1079/BER2001108

M. Thompson and C. Jiggins, Supergenes and their role in evolution, Heredity, vol.101, issue.1, p.24642887, 2014.
DOI : 10.1093/aob/mcr117

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4815649

A. Tiffany, F. Moundekeno, A. Traoré, M. Haile, E. Sterk et al., Encouraging impact following 2.5??years of reinforced malaria control interventions in a hyperendemic region of the Republic of Guinea, Malaria Journal, vol.3, issue.1, pp.298-308, 2016.
DOI : 10.1186/2049-9957-3-25

Y. Touré, V. Petrarca, S. Traoré, A. Coulibaly, H. Maiga et al., The distribution and inversion polymorphism of chromosomally recognized taxa of the Anopheles gambiae complex in Mali, Parassitologia, vol.40, pp.477-511, 1998.

T. Tran, S. Li, S. Doumbo, D. Doumtabe, C. Huang et al., An Intensive Longitudinal Cohort Study of Malian Children and Adults Reveals No Evidence of Acquired Immunity to Plasmodium falciparum Infection, Clinical Infectious Diseases, vol.57, issue.1, pp.40-47, 2013.
DOI : 10.1093/cid/cit174

J. Wang, Y. Wurm, M. Nipitwattanaphon, O. Riba-grognuz, Y. Huang et al., A Y-like social chromosome causes alternative colony organization in fire ants, Nature, vol.21, issue.7434, pp.664-668, 2013.
DOI : 10.1101/gr.121392.111

D. Weiss, B. Mappin, U. Dalrymple, S. Bhatt, E. Cameron et al., Re-examining environmental correlates of Plasmodium falciparum malaria endemicity: a data-intensive variable selection approach, Malaria Journal, vol.14, issue.1, pp.68-78, 2015.
DOI : 10.1080/01621459.1993.10476353

B. White, F. Santolamazza, L. Kamau, M. Pombi, O. Grushko et al., Molecular karyotyping of the 2la inversion in Anopheles gambiae, The American Journal of Tropical Medicine and Hygiene, vol.76, pp.334-339, 2007.

G. White, Anopheles gambiae complex and disease transmission in Africa, Transactions of the Royal Society of Tropical Medicine and Hygiene, vol.68, issue.4, pp.278-298, 1974.
DOI : 10.1016/0035-9203(74)90035-2

. Worldclim, WorldClim global climatic data, 2005.

Z. Yang, Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: Approximate methods, Journal of Molecular Evolution, vol.11, issue.3, pp.306-314, 1994.
DOI : 10.1007/BF00160154

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.6626

Y. Zhao, S. Kurscheid, Y. Zhang, L. Liu, L. Zhang et al., Enhanced survival of Plasmodiuminfected mosquitoes during starvation, PLoS One, vol.7, pp.228081-93, 2012.