A. Kovacs-simon, R. W. Titball, and S. L. Michell, Lipoproteins of Bacterial Pathogens, Infection and Immunity, vol.79, issue.2, pp.548-561, 2011.
DOI : 10.1128/IAI.00682-10

N. Buddelmeijer, The molecular mechanism of bacterial lipoprotein modification--How, when and why?, FEMS Microbiology Reviews, vol.39, issue.2, pp.246-261, 2015.
DOI : 10.1093/femsre/fuu006

URL : https://hal.archives-ouvertes.fr/pasteur-01407690

W. Zückert, Secretion of Bacterial Lipoproteins: Through the Cytoplasmic Membrane, the Periplasm and Beyond, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1843, issue.8, pp.1509-1516, 2014.
DOI : 10.1016/j.bbamcr.2014.04.022

K. Remans, K. Vercammen, J. Bodilis, and P. Cornelis, Genome-wide analysis and literature-based survey of lipoproteins in Pseudomonas aeruginosa, Microbiology, vol.156, issue.9, pp.2597-2607, 2010.
DOI : 10.1099/mic.0.040659-0

URL : https://hal.archives-ouvertes.fr/hal-00566917

H. Remaut and R. Fronzes, Bacterial Membranes: Structural and Molecular Biology, 2014.

J. B. Nielsen and J. Lampen, Glyceride-cysteine lipoproteins and secretion by Gram-positive bacteria, J. Bacteriol, vol.152, pp.315-322, 1982.

C. Paradis-bleau, Lipoprotein Cofactors Located in the Outer Membrane Activate Bacterial Cell Wall Polymerases, Cell, vol.143, issue.7, pp.1110-1120, 2010.
DOI : 10.1016/j.cell.2010.11.037

Y. Fu, Structure and dynamics of Pseudomonas aeruginosa ICP (Thesis, 2009.

J. Deisenhofer, X-ray structure analysis of a membrane protein complex, Journal of Molecular Biology, vol.180, issue.2, pp.385-398, 1984.
DOI : 10.1016/S0022-2836(84)80011-X

J. Bakelar, S. K. Buchanan, and N. Noinaj, The structure of the ??-barrel assembly machinery complex, Science, vol.372, issue.3, pp.180-186, 2016.
DOI : 10.1016/j.jmb.2007.05.022

L. Han, Structure of the BAM complex and its implications for biogenesis of outer-membrane proteins, Nature Structural & Molecular Biology, vol.276, issue.3, pp.192-196, 2016.
DOI : 10.1107/S0907444904019158

C. Infante-duarte and T. Kamradt, Lipopeptides of Borrelia burgdorferi outer surface proteins induce Th1 phenotype development in alphabeta T-cell receptor transgenic mice, Infect. Immun, vol.65, pp.4094-4099, 1997.

F. Oftung, H. G. Wiker, A. Deggerdal, and A. S. Mustafa, A Novel Mycobacterial Antigen Relevant to Cellular Immunity Belongs to a Family of Secreted Lipoproteins, Scandinavian Journal of Immunology, vol.46, issue.5, pp.445-451, 1997.
DOI : 10.1046/j.1365-3083.1997.d01-150.x

A. T. Selvan and K. Sankaran, Localization and characterization of prolipoprotein diacylglyceryl transferase (Lgt) critical in bacterial lipoprotein biosynthesis, Biochimie, vol.90, issue.11-12, pp.1647-1655, 2008.
DOI : 10.1016/j.biochi.2008.06.005

K. Sankaran and H. C. Wu, Lipid modification of bacterial prolipoprotein. Transfer of diacylglyceryl moiety from phosphatidylglycerol, J. Biol. Chem, vol.269, pp.19701-19706, 1994.

L. Vogeley, Structural basis of lipoprotein signal peptidase II action and inhibition by the antibiotic globomycin, Science, vol.492, issue.1, pp.876-880, 2016.
DOI : 10.1038/nature11683

S. D. Gupta, W. Dowhan, and H. C. Wu, Phosphatidylethanolamine is not essential for the N-acylation of apolipoprotein in Escherichia coli, J. Biol. Chem, vol.66, pp.9983-9986, 1991.

F. Hillmann, M. Argentini, and N. Buddelmeijer, -Acyltransferase, Journal of Biological Chemistry, vol.266, issue.32, pp.27936-27946, 2011.
DOI : 10.1016/j.plipres.2006.01.005

URL : https://hal.archives-ouvertes.fr/hal-00604405

S. Gélis-jeanvoine, Residues located on membrane-embedded flexible loops are essential for the second step of the apolipoprotein N-acyltransferase reaction, Molecular Microbiology, vol.1843, issue.4, pp.692-705, 2015.
DOI : 10.1016/j.bbamcr.2014.04.022

G. Mao, Crystal structure of E. coli lipoprotein diacylglyceryl transferase, Nature Communications, vol.50, p.10198, 2016.
DOI : 10.1073/pnas.120163297

H. C. Pace and C. Brenner, The nitrilase superfamily: classification, structure and function, Genome Biol, vol.2, pp.1-1, 2001.

D. Vidal-ingigliardi, S. Lewenza, and N. Buddelmeijer, Identification of Essential Residues in Apolipoprotein N-Acyl Transferase, a Member of the CN Hydrolase Family, Journal of Bacteriology, vol.189, issue.12, pp.4456-4464, 2007.
DOI : 10.1128/JB.00099-07

M. Caffrey and V. Cherezov, Crystallizing membrane proteins using lipidic mesophases, Nature Protocols, vol.83, issue.5, pp.706-731, 2009.
DOI : 10.1017/S0885715600014421

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2732203

H. Kamisetty, S. Ovchinnikov, and D. Baker, Assessing the utility of coevolutionbased residue-residue contact predictions in a sequence-and structure-rich era, Proc. Natl Acad. Sci. USA, pp.15674-15679, 2013.

N. Buddelmeijer and R. Young, -Acyltransferase (Lnt) Exists as an Extracytoplasmic Thioester Acyl-Enzyme Intermediate, Biochemistry, vol.49, issue.2, pp.341-346, 2010.
DOI : 10.1021/bi9020346

URL : https://hal.archives-ouvertes.fr/pasteur-01407714

F. Sievers, Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega, Molecular Systems Biology, vol.7, issue.1, p.539, 2011.
DOI : 10.1093/nar/gkn174

A. W. Roszak, : evolution in the laboratory, Biochemical Journal, vol.6, issue.1, pp.27-37, 2012.
DOI : 10.1073/pnas.0607502103

S. Narita and H. Tokuda, Bacterial lipoproteins; biogenesis, sorting and quality control, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 2016.
DOI : 10.1016/j.bbalip.2016.11.009

S. Akira and K. Takeda, Toll-like receptor signalling, Nature Reviews Immunology, vol.303, issue.7, pp.499-511, 2004.
DOI : 10.4049/jimmunol.167.5.2887

J. Y. Kang, Recognition of Lipopeptide Patterns by Toll-like Receptor 2-Toll-like Receptor 6 Heterodimer, Immunity, vol.31, issue.6, pp.873-884, 2009.
DOI : 10.1016/j.immuni.2009.09.018

M. S. Jin, Crystal Structure of the TLR1-TLR2 Heterodimer Induced by Binding of a Tri-Acylated Lipopeptide, Cell, vol.130, issue.6, pp.1071-1082, 2007.
DOI : 10.1016/j.cell.2007.09.008

H. Schagger and -. Tricine, Tricine???SDS-PAGE, Nature Protocols, vol.39, issue.1, pp.16-22, 2006.
DOI : 10.1038/nprot.2006.4

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nature Methods, vol.42, issue.7, pp.671-675, 2012.
DOI : 10.2144/000112257

M. Caffrey and C. Porter, Crystallizing Membrane Proteins for Structure Determination using Lipidic Mesophases, Journal of Visualized Experiments, vol.45, issue.45, p.1712, 2010.
DOI : 10.3791/1712

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3144658

A. Cheng, A simple mechanical mixer for small viscous lipid-containing samples, Chemistry and Physics of Lipids, vol.95, issue.1, pp.11-21, 1998.
DOI : 10.1016/S0009-3084(98)00060-7

D. Li, Use of a Robot for High-throughput Crystallization of Membrane Proteins in Lipidic Mesophases, Journal of Visualized Experiments, vol.67, issue.67, p.4000, 2012.
DOI : 10.3791/4000

D. Li, Harvesting and Cryo-cooling Crystals of Membrane Proteins Grown in Lipidic Mesophases for Structure Determination by Macromolecular Crystallography, Journal of Visualized Experiments, vol.67, issue.67, p.4001, 2012.
DOI : 10.3791/4001

W. Kabsch, Integration, scaling, space-group assignment and post-refinement, Acta Crystallographica Section D Biological Crystallography, vol.34, issue.2, pp.133-144, 2010.
DOI : 10.1107/S0907444909047374

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2815666

G. Sheldrick, : combining chain tracing with density modification, Acta Crystallographica Section D Biological Crystallography, vol.46, issue.4, pp.479-485, 2010.
DOI : 10.1107/S0907444909038360

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2852312

T. Pape and T. Schneider, HKL2MAP: A graphical user interface for macromolecular phasing with SHELX programs, J. Appl. Crystallogr, vol.7, pp.843-844, 2004.

N. S. Pannu, software suite for experimental phasing, Acta Crystallographica Section D Biological Crystallography, vol.8, issue.4, pp.331-337, 2011.
DOI : 10.1016/S0969-2126(00)00075-7

T. C. Terwilliger, wizard, Acta Crystallographica Section D Biological Crystallography, vol.64, issue.1, pp.61-69, 2008.
DOI : 10.1107/S090744490705024X

P. Emsley and K. Cowtan, : model-building tools for molecular graphics, Acta Crystallographica Section D Biological Crystallography, vol.60, issue.12, pp.2126-2132, 2004.
DOI : 10.1107/S0907444904019158

G. Bricogne, BUSTER version 2.10.2 (Global Phasing Ltd, 2016.

P. D. Adams, : a comprehensive Python-based system for macromolecular structure solution, Acta Crystallographica Section D Biological Crystallography, vol.64, issue.2, pp.213-221, 2010.
DOI : 10.1107/S0907444909052925

W. L. Delano, The PyMOL Molecular Graphics System, Version 1, 2010.

O. Trott and A. J. Olson, AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, Journal of Computational Chemistry, vol.17, pp.455-461, 2010.
DOI : 10.1002/jcc.21334

A. Sali and T. L. Blundell, Comparative Protein Modelling by Satisfaction of Spatial Restraints, Journal of Molecular Biology, vol.234, issue.3, pp.779-815, 1993.
DOI : 10.1006/jmbi.1993.1626

Y. Gu, Structural basis of outer membrane protein insertion by the BAM complex, Nature, vol.106, issue.7592, pp.64-69, 2016.
DOI : 10.1073/pnas.0810767106

S. Pronk, GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit, Bioinformatics, vol.29, issue.7, pp.845-854, 2013.
DOI : 10.1093/bioinformatics/btt055

D. H. De-jong, Improved Parameters for the Martini Coarse-Grained Protein Force Field, Journal of Chemical Theory and Computation, vol.9, issue.1, pp.687-697, 2013.
DOI : 10.1021/ct300646g

P. J. Stansfeld, MemProtMD: Automated Insertion of Membrane Protein Structures into Explicit Lipid Membranes, Structure, vol.23, issue.7, pp.1350-1361, 2015.
DOI : 10.1016/j.str.2015.05.006

P. J. Stansfeld and M. S. Sansom, From Coarse Grained to Atomistic: A Serial Multiscale Approach to Membrane Protein Simulations, Journal of Chemical Theory and Computation, vol.7, issue.4, pp.1157-1166, 2011.
DOI : 10.1021/ct100569y

E. Jefferys, Alchembed: A Computational Method for Incorporating Multiple Proteins into Complex Lipid Geometries, Journal of Chemical Theory and Computation, vol.11, issue.6, pp.2743-2754, 2015.
DOI : 10.1021/ct501111d

URL : http://doi.org/10.1021/ct501111d

C. Oostenbrink, A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6, Journal of Computational Chemistry, vol.91, issue.13, pp.1656-1676, 2004.
DOI : 10.1007/978-94-015-7658-1_21

G. Bussi, D. Donadio, and M. Parrinello, Canonical sampling through velocity rescaling, The Journal of Chemical Physics, vol.126, issue.1, p.14101, 2007.
DOI : 10.1007/978-3-642-61544-3

URL : http://arxiv.org/abs/0803.4060

M. Parrinello and A. Rahman, Polymorphic transitions in single crystals: A new molecular dynamics method, Journal of Applied Physics, vol.52, issue.12, pp.7182-7190, 1981.
DOI : 10.1103/PhysRevA.22.1690

B. Hess, P-LINCS:?? A Parallel Linear Constraint Solver for Molecular Simulation, Journal of Chemical Theory and Computation, vol.4, issue.1, pp.116-122, 2008.
DOI : 10.1021/ct700200b

T. Darden, D. York, and L. Pedersen, ) method for Ewald sums in large systems, The Journal of Chemical Physics, vol.9, issue.12, pp.10089-10092, 1993.
DOI : 10.1126/science.2548279

N. Michaud-agrawal, MDAnalysis: A toolkit for the analysis of molecular dynamics simulations, Journal of Computational Chemistry, vol.4, issue.Suppl. 2, pp.2319-2327, 2011.
DOI : 10.1109/5992.998641

R. D. Finn, HMMER web server: 2015 update, Nucleic Acids Research, vol.43, issue.W1, pp.30-38, 2015.
DOI : 10.1093/nar/gkv397

URL : http://doi.org/10.1093/nar/gkv397

C. R. Søndergaard, Values, Journal of Chemical Theory and Computation, vol.7, issue.7, pp.2284-2295, 2011.
DOI : 10.1021/ct200133y