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Structural insights into the mechanism
of the membrane integral N-acyltransferase
step in bacterial lipoprotein synthesis
Maciej Wiktor1,*,w, Dietmar Weichert1,*, Nicole Howe1,*, Chia-Ying Huang1,2, Vincent Olieric2, Coilı́n Boland1,

Jonathan Bailey1, Lutz Vogeley1, Phillip J. Stansfeld3, Nienke Buddelmeijer4, Meitian Wang2 & Martin Caffrey1

Lipoproteins serve essential roles in the bacterial cell envelope. The posttranslational

modification pathway leading to lipoprotein synthesis involves three enzymes. All are

potential targets for the development of new antibiotics. Here we report the crystal structure

of the last enzyme in the pathway, apolipoprotein N-acyltransferase, Lnt, responsible for

adding a third acyl chain to the lipoprotein’s invariant diacylated N-terminal cysteine.

Structures of Lnt from Pseudomonas aeruginosa and Escherichia coli have been solved; they are

remarkably similar. Both consist of a membrane domain on which sits a globular periplasmic

domain. The active site resides above the membrane interface where the domains meet

facing into the periplasm. The structures are consistent with the proposed ping-pong reaction

mechanism and suggest plausible routes by which substrates and products enter and leave

the active site. While Lnt may present challenges for antibiotic development, the structures

described should facilitate design of therapeutics with reduced off-target effects.
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L
ipoproteins are essential components of bacterial mem-
branes. Lipoproteins’ functions are myriad1–5. Some have
enzymatic activity, as in the case of the b-lactamase

(penicillinase) lipoprotein6. Others are enzyme activators7 and
inhibitors8. Many lipoproteins are components of complexes.
A noted example is the tetra-heme cytochrome subunit of the
photosynthetic reaction center9. Other complexes where lipoproteins
play an important role include the b-barrel assembly machinery
(BAM) where four of the five BAM subunits are lipoproteins10,11.
Lipoproteins are also virulence factors against which mammals
have evolved immune response systems12,13. These assorted
functions make lipoproteins interesting, important and relevant
biomacromolecules to understand. The current study focusses on the
final step in the lipoprotein synthesis and maturation pathway.

Lipoproteins have an N-terminal cysteine residue where one or
both of its functional groups is posttranslationally lipid modified.
A diacylglyceryl moiety is attached by a thioether linkage to the
invariant cysteine producing a diacylated lipoprotein (Fig. 1).
Combining this modification with an N-acylation of cysteine’s
free a-amino group generates a triacylated lipoprotein. In most
cases, the lipid modification affixes the protein to the membrane
with the protein part outside the membrane. Depending on
growth conditions, a lipoprotein can be di- or triacylated
suggesting that posttranslational modification (PTM) is tightly
controlled.

Lipoprotein synthesis begins with the full-length pre-
prolipoprotein entering the inner membrane via the TAT or
Sec secretion systems (Fig. 1). It has a membrane anchoring
N-terminal signal sequence 10 to 25 residues long that ends with
a consensus lipobox sequence of form L(A/V)� 4-L� 3-A(S)� 2-
G(A)� 1-Cþ 1. The first step in the three-step PTM pathway is
catalysed by lipoprotein diacylglyceryl transferase, Lgt14, which
attaches a diacylglyceryl moiety from phosphatidylglycerol (PG)
to the lipobox invariant cysteine by a thioether link15.
The diacylglyceryl modified (dagylated) cysteine is hereafter

designated Cys*. As a result of the reaction, the prolipoprotein
product is secured in the membrane by the signal sequence and
by the lipid modification. The second PTM step is catalysed by
lipoprotein signal peptidase, LspA16,17, which cleaves the signal
sequence from the prolipoprotein to the N-side of Cys*. The apo-
lipoprotein product remains anchored in the membrane by its
diacylglyceryl tail. For some lipoproteins no further modification
is needed. They remain and function in the diacylated state.
The rest are acted on by the third and last enzyme in the
PTM pathway, apolipoprotein N-acyltransferase, Lnt18. This
transferase N-acylates the Cys* of the apo-lipoprotein using
preferentially phosphatidylethanolamine (PE) as a lipid substrate
and generating the triacylated lipoprotein product2,18–21.

Crystal structures of the first two enzymes in the PTM pathway
have been reported. Lgt from E. coli was captured in complex
with PG and the inhibitor palmitic acid22. The structure of LspA
from P. aeruginosa was solved with the antibiotic globomycin in
the active site of this aspartyl peptidase17. Here we describe the
structure of Lnt, the last enzyme in the PTM pathway, which
offers valuable insights into its mechanism of action and
antibiotic development. In E. coli, the enzyme has been shown
to use the sn-1 chain of PE preferentially for lipoprotein
N-acylation in a two-step reaction20. Lnt is a member of the
nitrilase family of enzymes with two domains, a membrane
domain (MD) and a periplasmic nitrilase-like domain (ND)
harbouring the enzyme’s active site21,23.

Nitrilases comprise a superfamily of thiol enzymes found in
animals, plants, fungi and in certain prokaryotes23. They perform
nitrile and amide hydrolysis and the N-acylation (reverse
amidolysis) of proteins. The nitrilase reaction takes place in a
globular domain with a conserved abba fold and a Glu/Lys/Cys
catalytic triad. Seven branches of the superfamily have additional
domains. Lnt, with its MD, is one such example. In E. coli,
Glu267, Lys335 and Cys387 were identified as the catalytic triad
residues and homology modelling, with known nitrilase
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structures as templates, provided a putative structure and a
mechanism for Lnt action24. Clearly, a crystal structure of the
full-length enzyme was required to rationalize these findings
and conjectures and to provide a structural framework for
understanding Lnt’s mechanism of action.

Results
Structure determination. A particular focus of this research
group is on membrane proteins in P. aeruginosa. Accordingly,
a structure of Lnt from this opportunistic human pathogen
(LntPae) was selected for investigation. Because so much was
known about Lnt from E. coli (LntEco), it too was included in the
study. The two proteins have 39% sequence identity. The pure
proteins were functionally active as demonstrated in assays where
product formation was quantified with the synthetic biotinylated
lipopeptide, fibroblast stimulating ligand-1 (FSL-1-biotin), as the
second substrate (Fig. 2). Crystallization trials were undertaken
using the lipid cubic phase method25. Crystals that diffracted to
B3 Å were obtained for both Lnt constructs. Seleno-methionine
(Se-Met) labelling of LntEco for Se-single-wavelength anomalous
diffraction (Se-SAD) phasing was used to solve the native LntEco
structure to a resolution of 2.9 Å. The LntPae structure and
that of an inactive Cys387Ala mutant of LntEco were solved
by molecular replacement using the native LntEco structure as the
search model. Data collection and refinement statistics are
presented in Table 1. Representative electron density maps are
shown in Supplementary Figs 2 and 3. The overall structure of the
three constructs is similar. Co-evolutionary covariance analysis is

consistent with the crystal structures26 (Supplementary Fig. 4).
For purposes of the discussion that follows the focus will be on
the wild type LntEco construct.

Overall architecture. Lnt has two domains, a MD and a
periplasmic ND with 230 and 278 residues, respectively (Fig. 3).
The interfacial area between domains is 440 Å2. The active site,
defined by the catalytic triad, resides in the ND slightly above the
membrane surface with an opening for substrates and products
that leads into the bulk membrane. The MD consists of eight
transmembrane helices (H1–H8) with both N and C termini
in the cytoplasm (Fig. 4). The first six helices are arranged
cylindrically with helices forming the wall of the cylinder and
coiled counter-clockwise. At its periplasmic end, opposing helices
across the cylinder’s diameter are approximately equidistant
giving the MD the appearance of an open ended cylinder
(Fig. 4b). This periplasmic opening is covered by a highly con-
served 27-residue long linker (L1) connecting H5 and H6 that
includes two short helices, h1 and h2. The positioning of L1
across the top of the MD is due, in part, to Pro129 which
introduces a kink in H5 causing it to bend away from H6 and to
align with H4 (Fig. 4a). This enables conserved Arg139 on
the periplasmic end of H5 to hydrogen bond with backbone
carbonyls of highly conserved residues Phe146 and Trp148 in L1
thereby securing the loop as a periplasmic lid on the MD.
The essential nature of Arg139 is borne out by mutational studies.
A strong interaction between highly conserved Gly145 in L1 of
the MD and Tyr388 (Fig. 5d) in the ND contributes to holding
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Figure 2 | Lnt activity assay. (a–c) Lnt activity monitored as a shift in the SDS-PAGE mobility of FSL-1-biotin on N-acylation with quantitation by western

blotting. Uncropped images of the western blots including marker lanes are shown in Supplementary Fig. 1. (d,e) Lnt activity monitored by the conversion of

NBD-PE to NBD-lyso-PE (NBD-LPE) by thin layer chromatography with quantitation by fluorescence. (a) N-acyl transferase activity of LntPae and LntEco is

evident as a band shift towards higher molecular weight values resulting from a conversion of FSL-1-biotin (open arrow head) to N-acylated FSL-1-biotin

(full arrow head) in the presence of a lipid donor. (b) Time course experiment and lipid head group specificity of LntPae. After a 1 h incubation at 37 �C in

the presence of both substrates and enzyme (20 nM), the FSL-1-biotin band appeared B3 mm higher in the gel than was observed for both negative

control reactions without either DOPE or LntPae (lanes 1 and 2). The time dependence of the reaction is shown in lanes 3–5. When DOPE was replaced with

DOPG or DOPC, the product was formed much less efficiently (lanes 6 and 7). (c) Densitometric analysis of the time-dependent data in b. (d) LntEco

activity measurements for wild type (WT) and mutants E267Q, K335A and C387S. The reaction was stopped after 60 min. Data are shown for duplicate

reaction measurements. (e) Time course of lyso-PE production catalysed by LntEco. (f) Densitometric analysis of the time-dependent data in e.
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the two domains together where they meet at the periplasmic
surface of the membrane. This, in turn, helps position the
catalytic Cys387 for reaction (Fig. 5). Cys387 in the ND sits above
the center of the MD about 13 Å from where L1 crosses its
cylindrical opening (Fig. 3a). Mapping conserved residues onto
the structure identifies this region, between the two domains,
as the putative active site pocket (Supplementary Figs 5a,6).

On the opposite, cytoplasmic end of the MD, the same
cylindrical arrangement of helices H1–H6 holds with one
exception. H2 is tilted into the core of the cylinder effectively
closing this end of the protein (Fig. 4c). Arg123 on the
cytoplasmic end of H5 interacts with Thr48 on H2 and with
other local residues creating a water-tight seal between the two
sides of the membrane. H7 and H8 in the MD are bridged by the
ND in the periplasm. The connection between the two domains is
by way of two long linkers (L2, L3) that look and possibly act like
braces crossing over one another at the back of the ND (Fig. 3a,
Supplementary Fig. 7a). The H7/H8 helix pair sits to one end of

the MD (hereafter referred to as the back end), run approximately
parallel to one another, are oriented almost normal to the
membrane plane and are separated from each other by the width
of the MD. Arg438 on the ND has extensive interactions with
Thr478 and Gly479 in the L3 brace to H8. Furthermore, highly
conserved Thr481 on the L3 brace interacts with highly conserved
Glu435 on the ND (Supplementary Fig. 7b). Collectively, these
interactions presumably help poise the catalytic triad in the
ND above the MD for reaction and contribute to Lnt’s overall
structural integrity and function. Interestingly, a Thr481Arg
mutation inhibited the S-acylation step in the transferase reaction
consistent with an uncoupling of the two domains21.

Despite having a very high content of hydrophobic residues,
H3 and H4 appear to extend above the membrane interface into
the periplasm (Figs 3a and 4a, Supplementary Fig. 5b). H3 is
bent at conserved Gly71 and coils over H4 in an anticlockwise
direction. We speculate that the periplasmic surface of H3 and H4
forms one side of the portal for amphiphilic substrates to enter the

Table 1 | Data collection and refinement statistics for Lnt.

LntEco-Se* LntEco LntEcoC387A LntPae

PDB code — 5N6H 5N6L 5N6M

Data collection
Space group P212121 P212121 P212121 C2
Cell dimensions

a, b, c (Å) 54.56, 142.44, 201.39 54.2, 142.3, 199.92 55.22, 142.95, 197.71 152.73, 39.23, 102.25
a, b, g (�) 90, 90, 90 90, 90, 90 90, 90, 90 90, 116.26, 90

Beamline X10SA-PXII X10SA-PXII X10SA-PXII X06SA-PXI
Wavelength (Å) 0.9792 1.0 1.0 1.0
No. of crystals 3 3 3 2
Total data (�) 450 540 160 300
Resolution (Å) 50–3.97 (4.08–3.97) 50–2.90 (3.00–2.90) 50–2.90 (2.98–2.90) 50–3.10 (3.20–3.10)
Rmeas 0.29 (2.93) 0.34 (3.00) 0.24 (1.57) 0.28 (1.53)
I /sI 8.97 (0.83) 9.52 (1.00) 7.72 (1.32) 6.50 (1.43)
Completeness (%) 96.0 (66.2) 100 (100) 97.9 (86.3) 98.9 (99.2)
Multiplicity 16.28 (10.91) 19.67 (20.40) 5.42 (3.55) 5.40 (5.51)
CC1/2 0.99 (0.26) 0.99 (0.27) 0.99 (0.42) 0.98 (0.41)
CCanom 0.3 — — —
Mosaicity (�) 0.21 0.24 0.31 0.25

Phasing Se-SAD MR MR MR
Resolution range (Å) 50–4.5
Heavy atoms sites 20 Se
Correlation coefficient (all/weak) 49.40/18.80

Refinement
Resolution (Å) 50–2.90 50–2.90 50–3.10
No. of reflections Rwork/Rfree 35266/1763 34807/1699 10157/1005
Rwork/Rfree 0.22/0.25 0.23/0.26 0.22/0.27
r.m.s. deviations

Bond lengths (Å) 0.003 0.004 0.004
Bond angles (�) 0.728 0.798 0.855

B-factor
Proteins chain A 72.38 78.49 64.97
Proteins chain B 87.98 90.88 —
Ligands

9.9 MAG 83.39 98.79 68.46
Glycerol 93.07 99.31 73.66
Citrate — — 86.67

H2O 72.61 74.83 48.17
Ramachandran Plot

Favoured (%) 96.48 97.68 95.26
Allowed (%) 3.52 2.32 4.74
Outliers (%) 0.00 0.00 0.00

MolProbity Clash score 6.26 9.94 8.52

PDB, protein data bank.
*Data processing statistics is reported with Friedel pairs separated. Values in parentheses are for the highest resolution shell.
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active site. In addition to Gly71, H3 has three conserved glycines
(Gly60, Gly64 and Gly66) in close proximity to one another.
This suggests that H3 has considerable flexibility, possibly to
accommodate and to orient into the active site the N-terminal
diacylglyceryl–cysteine in differently sized and shaped lipoproteins.
Crystallography and molecular dynamics simulations (MDS) data
support this proposal (Supplementary Fig. 5c and d).

The ND is globular in shape and rests on the periplasmic
surface of the MD (Figs 3a and 6). It emerges from the MD as a
277-long polypeptide connecting H7 and H8 (Supplementary
Fig. 7). As noted, the two domains are linked by way of two
brace-like linkers (L2, L3) at the back of the ND (Supplementary
Fig. 7a). L2 and L3 connect H7 and H8 in the MD with the first
(b1) and last b-strands (b12) in the ND, respectively. L3 includes
a short helix (h4) towards the junction with H8. The ND is of the
four-layer abba sandwich fold type. Helices a1 and a2 form the
upper layer that resides atop the protein in the periplasm with
helices a3 and a4 forming the lower layer that sits on the
periplasmic surface of the MD. a3 is really a pair of helices. The
first is a single-turn helix (a30) and is part of a b-strand-turn-
helix motif termed a nucleophilic elbow in which resides the
catalytic Cys387 (Figs 5 and 6). Helix a30 includes highly
conserved residues Tyr388 and Glu389 both of which were shown
in mutational work to be essential24. The second helix in the pair
(a300) is two turns long. It is separated from the lower b-sheet of
the ND and tilts into the core of the MD providing shape
complementarity between the two domains. The two sheets of
the nitrilase sandwich have different alternation of parallel and
anti-parallel strands and, as usual, are twisted. The upper and
lower ab halves are connected on the front end of the ND by a 40
residue long loop with a short helix (a**) between b5 and b6 and
on the back end by the MD tethering linkages L2 and L3 between

b11 and b12. Layers within the sandwich are held together
primarily by hydrophobic interactions. The back end of the
domain consists of short loops and, as a result, it is relatively flat
and featureless. By contrast, the front end includes several loops
of varying length that extend away from the ND approximately
parallel to the membrane plane arranged roughly in a ring around
the catalytic triad. Together with the periplasmic H3 and H4
helical extensions, these loops create an opening to the membrane
and a funnel-shaped pocket at the base of which sits the catalytic
triad (Fig. 7a). They resemble arms that reach out from the active
site creating a pocket for substrates to enter and for products to
leave. For convenience of description these active site cavity
surrounding loops are hereafter referred to as arms and are
identified numerically clockwise around the catalytic Cys387
(Fig. 7a). Residues Pro353, Phe358 and Met362 on Arm3 and
Trp237 on Arm7 have been identified in mutational studies as
important or essential21. Highly conserved Gly447 resides at the
end of Arm6. Given the location of these key residues and the fact
that they do not interact notably with other parts of the protein
we speculate that their essentiality arises from the critical roles the
respective residues and the loops in which they reside play in
guiding substrates and products into and out of the active site.

A portal into and out of the active site pocket. A cleft exists
between H4 and H5 in the periplasmic leaflet of the MD that
extends out of the bulk membrane into the space between Arm 1
and Arm 3 (Fig. 7a, Supplementary Fig. 5b). This long hydro-
phobic opening leads into the active site pocket. We propose
that it serves as the portal through which lipid and lipoprotein
substrates enter the active site. In support of this, the structures of
Lnt solved in the course of this study contain a varying number of
structured monoolein lipid molecules from the mesophase in

a b

C387

C387

α3′

α3″

β7

c

α3″

β7

C387

Y388

I386

E389
I390

α3″

H5

α3′

α3′

Y388
W146

F146

R139

G145

L1

d

Oxyanion
hole

Figure 5 | Nucleophilic elbow in LntEco. (a) The nucleophilic elbow (orange) consisting of a b-strand-turn-helix (dashed box) shown in context of

the overall Lnt structure (grey). (b) Expanded view of the boxed region in a showing the catalytic Cys387 in the turn. The oxyanion hole created by

backbone amides in a30 is indicated. (c) Coordination between residues in the turn and the a30 helix. Dashed lines correspond to distances of r3.5 Å.

(d) Residues in L1 are coordinated to the core of the MD via Arg139 in H5 and to the nucleophilic elbow via Tyr388.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15952

6 NATURE COMMUNICATIONS | 8:15952 | DOI: 10.1038/ncomms15952 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


which crystallization occurs. Most lipids decorate the MD of Lnt
roughly in a bilayer arrangement reminiscent of lipids in a native
membrane (Fig. 8). Some however reside in the H4–H5 cleft and
occupy positions between Arm 1 and Arm 3 and above Arm 2
that feed into the active site pocket. In the LntEco-Cys387Ala
mutant structure, where lipid density is well defined and plentiful
in this region of the protein, the lipids arrange themselves in
single file along the hydrophobic pocket entrance into the active
site (Fig. 8b,c). The apolar nature of many of the residues in the

periplasmic extensions of H3 and H4 and the three arms is
consistent with this finding (Supplementary Fig. 5b, Fig. 8c).
These observations suggest that the positions occupied by the
structured lipids define the route to the active site taken by the
phospholipid and lipoprotein substrates of Lnt. MDS performed
with Lnt in a model hydrated membrane, reveal that lipids may
enter this region from the bulk membrane (Supplementary
Fig. 8). This indicates that there is sufficient space for both sub-
strates to enter the proposed catalytic site one at a time via this
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conduit. On the basis of the structured lipids in the crystal
structures and simulations it was plausible to dock substrates
and products individually into this binding pocket in a physico-
chemically reasonable manner and that is consistent with the
proposed ping-pong reaction mechanism. Collectively, these
observations help explain how the lipid and lipoprotein substrates
can effectively migrate out of the bulk membrane along the apolar
conduit created by the cleft between H4 and H5 and the space
between Arm1 and Arm3 to the active site Cys387 situated
some 13 Å above the periplasmic surface of the membrane
(Supplementary Fig. 8).

N-acyltransferase mechanism. The N-acyltransferase reaction
catalysed by Lnt is proposed to take place in two steps (Fig. 9,
Supplementary Fig. 9). The first is an acyl transfer reaction where
the acyl chain at the sn-1 position of the substrate, preferentially
PE in the case of Lnt from E. coli, is transferred to form a
thioester linkage with the gS of the catalytic Cys387 (Fig. 9a–c,
Supplementary Fig. 9a–c). In the second step, the acyl chain is
transferred from Cys387 to the a-amino group of the dagylated
N-terminal cysteine of the lipoprotein (Fig. 9d–f, Supplementary
Fig. 9d–f). The reaction follows a ping-pong mechanism where
the first product departs the active site before the second substrate
enters. The first step is proposed to involve proton abstraction
from the gS of Cys387 by catalytic Glu267. This generates a
thiolate which, in turn, attacks the ester linkage between the acyl
chain and the glycerol backbone of the phospholipid substrate to
form a tetrahedral intermediate (Fig. 9b, Supplementary Fig. 9b).
A net negative charge on the oxygen attached to the tetrahedral

carbon, the oxyanion, is stabilized by nearby Lys335, and by the
proximal oxyanion hole created by the backbone amides of I390,
I391 and L392 in a30 (Fig. 5b). Lys335 has a predicted pKa some
2.25 units above that for a lysine containing model peptide
(Supplementary Table 1). It should be charged under physio-
logical conditions for effective oxyanion stabilization. Mutating
Lys335 to Ala inactivated the enzyme consistent with the essential
role played by this catalytic triad member (Fig. 2d). Glu343 is an
invariant residue in the active site pocket. Its side chain carboxyl
oxygens are proximal (2.8 Å) to the e-amino group of Lys335
enhancing its cationic character for oxyanion stabilization.
Collapse of the tetrahedral intermediate accompanied by proton
abstraction from Glu267 releases the lipid product, lyso-PE.
Lyso-PE exits the binding pocket at which point the protein is
primed for step 2 which happens as soon as apo-lipoprotein
substrate enters and forms the Michaelis complex. The reaction
passes through a second proposed tetrahedral intermediate
(Fig. 9d, Supplementary Fig. 9e) which forms when the a-amino
group at the N terminus of the lipoprotein attacks at and bonds to
the carbonyl carbon in the thioester linkage between Cys387
and the acyl chain that is about to undergo transfer. As with
the tetrahedral intermediate in the first step of the reaction, the
oxyanion is stabilized by Lys335 and the oxyanion hole in the
nucleophilic elbow. Collapse of the tetrahedral intermediate gives
rise to the mature triacylated lipoprotein product and a reformed
enzyme. As soon as the lipoprotein departs and a PE molecule
enters the binding pocket, the enzyme is reset for another round
of catalysis. Several of the reaction states have been simulated
by molecular dynamics and shown to be stable in silico
(Supplementary Fig. 9, Supplementary Movies 1 and 2).
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The structure of Lnt is entirely consistent with the proposed
mechanism. The predicted pKa of the gS in the side chain of
Cys387 in the Lnt model is 12.7, almost four pH units higher than
that of a cysteine containing model peptide (Supplementary
Table 1). Therefore, at pH 7.0, Cys387 is fully protonated.
However, nearby Glu267 has a side chain pKa of 7.0 some two
and a half pH units above that of Glu in a model peptide. This
residue, which is 50% deprotonated at pH 7.0, is in a position to
extract a proton from Cys387 thereby generating the highly
nucleophilic thiolate. The closest distance between a side chain
carboxyl oxygen on Glu267 and the gS of Cys387 is 4.1 Å (3.5 Å
in LntPae; Fig. 7b). This is too far for direct interaction and
suggests that proton abstraction may involve the mediation of a
water molecule to relay transfer from Cys387 to Glu267. Such a
water molecule was not seen in the structure perhaps due to
resolution limits or disorder. It may also be that flexibility in local
backbone and side chain conformation bring the Cys387 and
Glu267 into proximity for direct proton exchange. The latter
conjecture is supported by MDS, which suggests a spontaneous
and consistent hydrogen bond arrangement between the gS
proton of Cys387 and the side chain of Glu267 (Supplementary
Movie 1). Furthermore, a Glu267Gln mutation inactivated the
enzyme consistent with its proposed role in proton abstraction
(Fig. 2d). Interestingly, His425 which is highly conserved and
located in the active site pocket next to Cys387 (Fig. 7b) has a
predicted pKa of 3.5, some 3 pH units lower than expected
(Supplementary Table 1). At pH 7, it is fully deprotonated and
should provide additional proton extracting power to increase the
nucleophilic character of Cys387. In its protonated state, His425
may also provide stabilization for the oxyanion of the proximal
tetrahedral intermediate that forms in each step. In addition
to His425, catalytic Cys387 is in hydrogen bonding distance to
conserved Ser411 (Fig. 7b). Ser411 is suitably positioned to
stabilize the gS of Cys387 as it alternates between thiol and
thiolate forms during the two-step transferase reaction.

In several of the crystal structures solved in the course of
this work host lipid molecules are visible extending deep into
the binding pocket and next to Cys387. In one of these
(LntEco-C387A), the gS of Cys387 is 4.5 Å from the hydroxyl
on the glycerol backbone of a structured monoolein (Fig. 8). This
is compatible with a mechanism where a fatty acyl donor

substrate, such as PE, accesses the site with its ester linked acyl
chain at the sn-1 position of the glycerol backbone proximal
to the nucleophilic thiolate for reaction. The first step in the
reaction happens ‘spontaneously’ yielding an acylated-enzyme
intermediate. Indeed, the Lnt enzyme in whole cells has been
shown to exist in its acylated form27. However, the thioester
linkage is labile and can deacylate by hydrolytic cleavage in the
absence of second substrate. By contrast, the Cys387Ser mutant
has been shown to acylate spontaneously but because the oxygen
ester is more stable than the thioester, the subsequent N-acylation
step is blocked even in the presence of lipoprotein substrate.
We confirmed this in functional assays where the Cys387Ser
construct proved to be inactive (Fig. 2d). Efforts aimed at
capturing a structure of this intermediate were unsuccessful.
In the absence of an actual structure, a model of the palmitoyl-
enzyme intermediate has been created and shown to be stable in
silico (Supplementary Fig. 10b).

A structure comparison of LntEco and LntPae. As noted,
LntEco and LntPae have 39% sequence identity. The two
structures are remarkably similar with RMSD values over 501
residues of 1.2 Å (Supplementary Fig. 11a). Despite having
different residues in the active site pocket, the catalytic
triad residues superpose almost exactly on one another
(Supplementary Fig. 11c) consistent with the two enzymes
catalysing the same N-acyltransferase reaction with similar
substrates. Indeed, the phospholipid profile of E. coli and
P. aeruginosa membranes are similar with PE and PG
together making up 95% of membrane lipids. The rest is mainly
cardiolipin. The fatty acids of the phospholipids are pre-
dominantly 16 and 18 carbons long. These similarities in
membrane lipid composition help rationalize the near structural
identity of the two enzymes. Relatedly, LntPae can complement
an lnt depletion strain of E. coli and is dominant negative over
LntEco at 37 �C (ref. 24). Thus, LntPae is functional in E. coli.

Sequence alignment shows LntEco to have an heptapeptide
motif, YSYESAD (Tyr325-Asp331), that is absent in LntPae28.
The heptapeptide insert forms a loop that clamps into the cleft
between a2, b3 and b4 at the top of the ND (Supplementary
Fig. 11a,b). Given its location at considerable remove from the
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active site, it is not obvious that this difference impacts in any way
on catalytic activity or selectivity of the enzyme.

N-acyltransferase activity. Detailed characterization of the lipid
head group specificity and kinetics of LntEco have identified PE
as the preferred substrate ahead of PG. PC was the least favoured
acyl donor of the lipids studied20. To likewise investigate the head
group specificity of LntPae, a lipopeptide band shift assay was
performed with LntPae, and with DOPE, DOPG or DOPC as acyl
donors. FSL-1-biotin was used as the lipoprotein substrate (Fig. 2).
Under these conditions and with PE as the lipid substrate, the
reaction ran at the rate of one FSL-1-biotin molecule N-acylated
every second. However, transfer rate dropped significantly with PG
and PC. Qualitatively therefore, LntPae and LntEco share a similar
head group specificity. The structural similarity of the two enzymes
is consistent with this finding.

Discussion
Using substituted cysteine accessibility measurements (SCAM)
with whole cells, a membrane topology for LntEco was reported
that included six transmembrane helices, a periplasmic ND and
an 80 residue long cytoplasmic loop21. The latter was proposed to
include two hydrophobic helices disposed at the membrane
interface. The Ser154Cys mutant used in the SCAM study showed
little accessibility to the water-soluble labelling agent leading to
the conclusion that Ser154 and the entire cytoplasmic loop were
to the cytoplasmic side of the membrane. The current results
rationalize this interpretation and show that the two hydrophobic
helices referred to in the SCAM based model correspond to H5
and H6 in the crystal structure. Ser154 resides in L1 between H5
and H6 where the MD and ND come together. The arrangement
is consistent with the Ser154Cys mutant showing little
accessibility.

The crystal structures and MDS suggest that the tips of the
arms surrounding the actives site are flexible (Supplementary
Fig. 5c,d). Towards the active site, flexibility reduces
considerably. In the C387A mutant structure, a row of single
monoolein lipid molecules appears corralled in this proposed
portal formed by Arm 1, Arm 3 and the H3/H4 cleft that
connects the active site pocket with the bulk membrane (Fig. 8).
It makes sense therefore that this conduit can be navigated
by phospholipid substrate molecules, especially in a sideways
orientation with the sn-1 chain on point. On account of its size
however, the lipoprotein substrate could experience difficulties
with access and egress. For example, if the protein part of the
lipoprotein is stably folded all the way to its diacylated N-terminal
cysteine it is unlikely to be able to act as a substrate for lack of
space. In this folded condition therefore the only way to access
the active site would be for the arms to open wide to
accommodate the lipoprotein’s bulk which can be considerable.
This seems unlikely. Such a conformation or range of motion was
not observed in the crystal structures nor during MDS. A more
reasonable alternative is that the stretch of residues immediately
following the N-terminal cysteine of the lipoprotein is unfolded.
In this way, it can function as a flexible peptide tether linking the
N-terminus, which must access the active site buried in Lnt,
and the rest of the lipoprotein. In this scenario, the girth of
the tether—the diameter of a peptide chain—would easily
be accommodated in the portal to guide the N terminus in its
di- and triacylated states into and out of the active site. In support
of this proposal, the first 5–6 residues of the lipoprotein subunit
CytC are unstructured as observed in the crystal structure of
the reaction center complex where all N-terminal residues
(C*FEPPPATTTQ) and the lipid modification of CytC are in
electron density29. Furthermore, sequence analysis (Supplementary

Fig. 12) performed on lipoproteins from E. coli and P. aeruginosa
reveal C*SSK(T)P(S)E(K)D(V)S(P)Q(E)P(D)A(S) and C*SSS(L)
PPPPP(L)PA, respectively, as the most frequently observed
residues in the N-terminal undecapeptide. The high frequency of
prolines is consistent with an unstructured conformation for the
tether, a likely lipoprotein processing motif. Docking and MDS
performed with LntEco in complex with the lipodecapeptide
substrate FSL-1 (C*GDPKHPKSF) indicates that this mode of
access is entirely reasonable (Supplementary Fig. 13).

The acyl chain preferences of LntEco have been investigated20.
PE with saturated and unsaturated fatty acids at the sn-1 and sn-2
positions, respectively, is an effective substrate. Chain preferences
were not investigated in the current study. However, the crystal
structures show that the active site is buried at the base of a long
channel (Figs 7a and 8). It is there that the acyl chains of the lipid
substrates are proposed to reside during reaction. In addition to
head group effects therefore, differences in how the acyl chains
are accommodated in the confined space of the active site pocket
are likely to play a major role in determining lipid substrate
selectivity. The same argument can be made regarding the lipid
component of the lipoprotein substrate.

Mature lipoproteins are either di- or triacylated. Therefore,
some lipoproteins are Lnt substrates while others are not. The
origin of the disparity is not known. With lipid substrates,
preferences are expressed by Lnt at both head group and acyl
chain levels. Likewise for the lipoprotein substrate, preferences
based on the protein as well as the lipid component are perhaps
to be expected. On the basis of the extant crystal structures of Lnt,
it has been proposed that the identity of the acyl chains in the
diacylglyceryl moiety of the lipoprotein will impact on lipoprotein
substrate selectivity. What about the protein component and to
what extent does it influence Lnt lipoprotein preference?
Arguments have been presented above regarding the need for
an unstructured peptide tether between the lipidated N-terminal
cysteine and the folded region of the lipoprotein substrate. This
might suggest that provided the tether is unfolded and is long
enough, it will suffice as an Lnt substrate. Thus, tether length and
structure may determine which lipoproteins will or will not
undergo N-acylation.

Downstream of the PTM pathway, triacylated lipoprotein
products interact with the Lol trafficking system (Fig. 1)30.
Residues at the þ 2 and þ 3 positions (and þ 3 and þ 4
positions in P. aeruginosa), relative to the N-terminal cysteine at
position þ 1, act as sorting signals. Depending on signal identity
the lipoprotein either remains in the cytoplasmic membrane or is
trafficked to the outer membrane. Presumably, these signature
residues matter little to Lnt since, regardless of identity, all of the
corresponding lipoproteins must undergo N-acylation. Thus, a
degree of insensitivity on the part of Lnt to primary structure in
this part of the lipoprotein substrate is expected.

E. coli and P. aeruginosa have between 100 and 200 different
types of lipoproteins that range in size from 50 to over 900
residues. The identity of all those that are Lnt substrates is not
known. However, it is likely to be considerable. This suggests that
the enzyme is promiscuous with regard to protein identity. The
fact that biotin C terminally labelled lipopeptide FSL-1 is an Lnt
substrate is consistent with this apparent indifference. These
observations suggest that Lnt is relatively indifferent to the
protein component of its lipoprotein substrate and that the
diacylglyceryl moiety on the N-terminal cysteine of a lipoprotein
is likely to play a major role in determining whether or not it is an
Lnt substrate.

Clearly, the enzymes involved in the synthesis of lipoproteins
that play a vital role in the life of the microbial cell are potential
targets for antibiotic development programs. Lnt presents a
particular challenge because it has a catalytic triad of the nitrilase
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type and enzymes, with the same conserved catalytic triad, are
found in mammals (Supplementary Fig. 11c)23. Fortunately, the
substrates of Lnt and mammalian nitrilase-like enzymes are very
different. Both substrates of Lnt are fatty acylated molecules
while nitrilases cleave carbon-nitrogen bonds in non-lipidated
molecules. With high resolution crystal structures of both host
and bacterial enzymes, it should be possible to rationally design
drugs that selectively target the pathogen.

An additional difficulty arises with developing drugs targeting
lipoprotein PTM enzymes that relates to the behaviour of
lipoproteins as potent agonists of the immune system. Pathogen
recognition and eventual elimination benefits from prompt
activation of the innate immune response. Lipoproteins are
triggers of this event that involves Toll-like receptors (TLR)31,
TLR1, TLR2 and TLR6. Heterodimerization of TLR2 with TLR1
or TLR6 and lipoprotein complexation sets in train the innate
immune responses leading to antigen-specific acquired and
long-term immunity. Interestingly, simple lipopeptide mimics
of lipoproteins, such as the di- and triacylated peptides,
Pam2CSK4 and Pam3CSK4, trigger immune responses
suggesting that the N-terminal lipidated cysteine in these
ligands is the principal motif stimulating the immune response.

This background highlights the nature of the challenge
associated with developing antimicrobial therapies targeting
PTM enzymes. The receptors responsible for activating the host
innate immune response as well as the enzymes that perform
bacterial lipoprotein synthesis both bind lipoproteins. Thus,
a ligand found to inhibit lipoprotein synthesis and that is a
potential antibiotic may act by binding to the active site of the
enzyme mimicking the substrate or product lipoprotein. Likewise,
the immune receptors bind lipoproteins tightly and specifically
and in a manner that may well resemble that used by the PTM
enzymes. In this event, the ligand while possibly a potent
antibiotic will have undesirable off-target effects that show up
as interfering with and possibly blocking the innate immune
response. However, with high-resolution structures of both
receptor-lipoprotein and enzyme-lipoprotein complexes and
assuming the binding pockets are sufficiently different, it should
be possible to rationally design a selective antibiotic without such
off-target effects. Crystal structures of TLR-lipopeptide complexes
are available32,33. Clearly, the need exists for structures of
complexes between PTM enzymes and lipoproteins to advance
the critical mission of developing safe and selective new antibiotics.

Methods
Expression and purification. The DNA for LntEco and LntPae expression was
synthesized and cloned into the pET28a vector using the restriction sites NdeI and
XhoI to produce expression constructs with an N-terminal thrombin-cleavable
His6-tag (GenScript, USA). For LntEcoC387A, the amino acid substitution was
introduced by PCR-based site-directed mutagenesis. Sequences of synthetic genes
and primers are included in Supplementary Table 2.

Expression was carried out in chemically competent C43(DE3, Sigma-Aldrich,
USA) and C41(DE3, Sigma-Aldrich, USA) cells for LntEco and LntPae,
respectively. Cells were transformed with the pET28a vector and grown in
kanamycin-supplemented (50 mg ml� 1) LB agar plates. After overnight incubation,
the cells were suspended in 3� 2 ml of LB and TB for LntEco and LntPae,
respectively. 1 ml of this suspension was used to inoculate 1 l of medium. Cultures
were grown at 200 r.p.m. and 37 �C to an OD600nm of 1.6 and cooled to 20 �C on
ice. Expression of Lnt was induced with 0.5 mM IPTG and cells were grown for
20 h at 20 �C post-induction. Cells were collected at 6,000g for 5 min at 4 �C,
resuspended in buffer A (20 mM Tris-HCl, 50 mM NaCl, 0.5 mM EDTA, 1 mM
PMSF, pH 8) and lysed at 1,000–1,750 bar using an EmulsiFlex-C5 homogenizer
(Avestin, Canada) at 4 �C. Membranes were pelleted by centrifugation at 120,000g
for 45 min at 4 �C, solubilized in buffer B (20 mM HEPES-NaOH, 200 mM NaCl,
10%(v/v) glycerol, 1 mM PMSF, 2.5%(w/v) LMNG, pH 7) for 30 min at room
temperature (RT) followed by centrifugation at 60,000g for 45 min at 4 �C. The
supernatant was supplemented with imidazole to a final concentration of 20 mM
and mixed with Ni-NTA Superflow resin (Qiagen, Germany) on a mixer for 60 min
at 4 �C. The resin was washed with 200 ml of buffer C (20 mM HEPES-NaOH,
800 mM NaCl, 40 mM imidazole, 10%(v/v) glycerol, 0.5 mM PMSF, 0.05%(w/v)

LMNG, pH 7) and the protein eluted with buffer D (40 mM sodium citrate,
200 mM NaCl, 400 mM imidazole, 10%(v/v) glycerol, 0.5 mM PMSF and 0.1%(w/v)
LMNG, pH 6). The protein was further purified using a HiLoad 16/60 Superdex
200 column (GE Healthcare, UK) equilibrated in buffer E (20 mM sodium citrate,
200 mM NaCl, 10%(v/v) glycerol, 0.05%(w/v) LMNG, pH 6). The purified protein
was concentrated in a 50 kDa MWCO Amicon Ultra 15 concentrator (Millipore,
USA) to Z13 mg ml� 1, aliquoted, snap frozen in liquid nitrogen and stored at
� 80 �C for subsequent use in crystallization and functional assays. For Se-Met
labelling of LntEco, B834(DE3) cells were cultured on minimal medium
supplemented with 80 mg l� 1 Se-Met and purified as described above.

In vitro activity assays. N-acyl transferase activity of LntPae and LntEco was
monitored as a shift in the lipopeptide (fibroblast stimulating ligand; FSL-1-biotin;
molecular weight (MW), 2,247 Da) substrate band position on an SDS-PAGE
towards higher MW values. Reaction mixtures contained 20-100 nM enzyme,
500 mM phospholipid (POPE, DOPE, DOPG, DOPC; Avanti Polar Lipids, Inc.),
2.5-5 mM FSL-1-biotin (EMC Biochemicals, Germany), 0.1%(w/v) Triton X-100
and either: (i) 50 mM Tris-HCl, 150 mM NaCl, pH 7.2 or (ii) 20 mM sodium
citrate, 200 mM NaCl, pH 6.5. Lipids were added from 5%(w/v) stocks in 1%(w/v)
Triton X-100. Reactions were run at 37 �C and were stopped by mixing 4 volumes
of reaction mixture with 1 volume of 5� SDS loading buffer.

Reaction mixtures containing 25–50 ng of FSL-1-biotin were run on
home-made Tris-Tricine PAGE gels supplemented with 6 M urea34. The gel
consisted of three sequentially polymerized layers: (i) resolving gel, 19 cm: 18% T,
5.25% C, (ii) spacer gel, 2 cm: 11% T, 5.25% C, and (iii) stacking gel, 1.5 cm: 6% T,
5.25% C, where T and C refer, respectively, to total acrylamide and cross-linker
concentration in the gel. Gels were run in an SE 660 electrophoresis unit
(Amersham Biosciences, UK) at a constant current of 60 mA for B6 h at RT.
FSL-1-biotin bands were transferred electrophoretically onto a nitrocellulose
membrane which was subsequently blocked in 30 ml 3%(w/v) bovine serum
albumin (BSA) in Tris-buffered saline Tween (TBST) for 10 min, incubated with
streptavidin-HRP conjugate (Sigma-Aldrich, USA) at 1:7,500 dilution in 1.5%(w/v)
BSA in TBST for 10 min and washed 4 times with 50 ml TBST for 5 min. Blots were
developed using a set of SuperSignal solutions (Thermo Scientific, USA). The signal
was recorded using a Chemidoc MP gel imaging system (Bio-Rad, USA).

To study the first step in the Lnt catalysed reaction, we developed a simple and
robust thin-layer chromatography (TLC)-based functional assay which monitors
the formation of lyso-PE, a product of the reaction catalysed by Lnt. Lyso-PE is
formed when Lnt transfers the sn-1-acyl chain from PE to the N-terminal amino
group of the apo-lipoprotein. The synthetic lipopeptide FSL-1 was used as the
lipoprotein substrate. FSL-1 is a decapeptide based on the N-terminal sequence of a
lipoprotein from Mycoplasma pneumoniae. It has been shown previously that the
Lnt-acyl intermediate transfers the acyl chain to the a-amino group of the
diacylated cysteine at the N terminus of FSL-1 (ref. 20).

18:1-12:0 NBD-PE (NBD-PE, Ex460 Em533) (Avanti Polar Lipids, USA) was
used as the substrate acyl donor with which to assay LntEco and LntPae in the
presence of FSL-1. NBD-PE is labelled with the fluorophore 7-nitro-2-1,3-
benzoxadiazol-4-yl)amino (NBD) at the end of the 12-carbon acyl chain that is in
ester linkage at the sn-2 position of glycerol in the PE head group. Lnt specifically
transfers the sn-1 chain. Thus, the only NBD-labelled components in the reaction
mix should be the NBD-PE substrate and the lyso-NBD-PE product. Both were
extracted from the reaction mixture at fixed times post-reaction initiation and
separated by TLC. The fluorescence of the NBD-fluorophore was quantified on the
TLC plate as detailed below.

Stocks of NBD-PE, solubilized in DMSO (Sigma-Aldrich, USA) at a
concentration of 10 mg ml� 1, were stored at � 80 �C. Stocks of FSL-1 (EMC
Microcollections, Germany), solubilized in Milli-Q water at a concentration of
5 mg ml� 1, were stored at � 80 �C. Assays were carried out in buffer F (50 mM
Tris-HCl pH 7.5, 150 mM NaCl, 1 mM TCEP, 0.02%(w/v) LMNG) at 37 �C.

Time dependence assays were performed in 480ml of reaction mixture
containing 500 mM NBD-PE and 150 mM FSL-1 in buffer F. The reaction was
initiated by adding 8 mM LntEco and was carried out at 37 �C with shaking at
180 r.p.m. 40 ml aliquots of the reaction mix were removed at 0, 1, 2, 4, 8, 16, 40, 60,
90 and 120 min after the reaction was started and enzymatic activity was stopped
by flash freezing the samples in liquid nitrogen.

The activity of the LntEco mutants Lnt-E267Q, Lnt-K335A and Lnt-C387S was
assayed in duplicate in 40 ml reactions containing 520 mM NBD-PE and 160 mM
FSL-1 in buffer F. Reactions were initiated by adding 11.6 mM enzyme and were
allowed to proceed at 37 �C for 1 h with shaking at 180 r.p.m. The reactions were
stopped by flash freezing in liquid nitrogen.

To extract NBD-labelled lipid substrate and product from the reaction mix,
40 ml of 70%(v/v) ethanol were added to the frozen reaction mix samples followed
by vortexing for 10–20 s at RT until an homogenous solution was obtained. Lipid
substrate and product were extracted by vortexing 30 ml of chloroform with the
solution for 45 s. Phase separation was facilitated by centrifugation in a benchtop
centrifuge for 2 min at 13,000g and 20 �C. The lower chloroform phase was
transferred into a 1.5 ml Eppendorf tube. The tube was left open in a fume hood for
10 min at RT to passively evaporate excess chloroform and to concentrate the lipid.
The tube was centrifuged for 2 min at 13,000g and 20 �C and all of the collected
organic phase was spotted on a Silica gel 60 F254 TLC plate (Merck, USA). The
plate was placed in a desiccator at RT under a high vacuum (50 mbar) for 10 min to
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remove residual DMSO. Chromatography was carried out with a mobile phase
consisting of chloroform:acetone:acetic acid:methanol:water (10:4:2:2:1 by vol). The
plate was dried in a stream of nitrogen and imaged using a Biorad Chemidoc MP
imager (Fluorescein filter). Fluorescent spots of lyso-NBD-PE were subjected to
image analysis using ImageJ35. The results were plotted using PRISM 6.0
(GraphPad, USA).

Crystallization. For crystallization trials, the Lnt protein was reconstituted into the
bilayer of the cubic mesophase following a standard protocol25,36. The protein
solution was homogenized with monoolein (9.9 MAG) in a coupled syringe mixing
device using two volumes of protein solution and three volumes of lipid37.
Crystallization trials were set up by transferring 50 nl of the protein-laden mesophase
onto a silanized 96-well glass sandwich plate followed by 800 nl of precipitant
solution using an in meso robot38. The glass plates were stored in an imager
(RockImager 1500, Formulatrix, USA) at 20 �C for crystal growth. Crystals of LntEco
were obtained with 8%(v/v) MPD, 0.1 M MES pH 6.0 and 0.4 M ammonium citrate.
Crystals of LntPae were obtained with 30%(v/v) PEG-500 DME, 0.1 M sodium
citrate pH 5.0 and 0.1 M sodium acetate. Crystals of LntEco and LntPae grew to
about 100� 70� 5mm3 and about 70� 30� 5mm3, respectively, after B2 weeks.
Crystals from the lipid cubic phase were loop-harvested and snap-cooled in liquid
nitrogen directly and without added cryo-protectant39.

Data collection and processing. X-ray diffraction experiments were carried out at
100 K on protein crystallography beamlines X06SA-PXI or X10SA-PXII at the
Swiss Light Source, Villigen, Switzerland. Measurements were made in steps of
0.1–0.2� at speeds of 1–2� s� 1 with either the EIGER 16M or the PILATUS 6M-F
detector operated in a continuous/shutterless data collection mode at a sample-to-
detector distance of 40-50 cm. For Se-Met SAD phasing, diffraction data were
collected on Se-Met-derivative E. coli Lnt (LntEco-Se) crystals at the weavelength
and flux values of 0.9792 Å and 1.2� 1011 photons per s, respectively. Native data
from LntEco crystals were measured at wavelengths and flux values of 1.0 Å
and 2.2� 1011 photons per s, respectively. Native data from LntEcoC387A were
measured at wavelengths and flux values of 1.0 Å and 6.0� 1011 photons per s.
The data sets for LntEco-Se, LntEco and LntEcoC387A were all measured with a
10� 30mm2 X-ray beam size at beamline X10SA-PXII. Native data from LntPae
crystals were measured with a 15� 40mm2 X-ray microbeam at wavelengths and
flux values of 1.0 Å and 1.2� 1012 photons per s at beamline X06SA-PXI.

Data were processed with XDS40 and scaled and merged with XSCALE40.
A 16-fold redundant Se-Met derivative data set to 3.97 Å was obtained by merging
the data sets from 3 crystals collected at a wavelength of 0.9792 Å. Data sets for
LntEco, LntEcoC387A and LntPae were collected and merged from multiple
crystals with 40–150 wedges to 2.9, 2.9 and 3.1 Å resolution, respectively. Data
collection parameters are summarized in Table 1.

Structure determination and refinement. The SAD method was employed for
experimental phasing using a data set from LntEco-Se crystals. Substructure
determination was performed with 5,000 SHELXD trials41 using the HKL2MAP
interface42. CRANK2 (ref. 43) was used to obtain an initial model, which was
completed using the LntEco high resolution data with PHENIX.AutoBuild44 and
manual building in Coot45. The structures of LntEcoC387A and LntPae were
solved by MR by means of the program MOLREP46 with LntEco as search model.
BUSTER47 and PHENIX.refine48 were used during the refinement of all structures.
Structure quality scores were obtained using MolProbity implemented from the
PHENIX suite48. Refinement statistics are reported in Table 1. Figures were
generated using PyMOL (http://www.pymol.org)49.

Docking and molecular modelling and simulations. Individual enzyme-ligand
complexes were configured and built using initial dockings from Autodock Vina50 and
refined using a combination of Modeller51, Maestro (Schrödinger Release 2016-4:
Maestro, Schrödinger, LLC, New York, NY, 2016) and PyMol (The PyMol Molecular
Graphics System, Version 1.8, Schrödinger, LLC), guided by the electron density for the
monoolein lipids in the Lnt X-ray structures, the LntEcoC387A construct in particular.

The lipid-modified cysteine parameters were created from lipid parameters for
diacylglycerol and palmitoyl moieties and combined with the parameters of the
N-terminal cysteines to create the diacylated17 and triacylated52 forms of FSL-1.

All MDS were performed using GROMACS v5.1.2 (ref. 53). The Martini
2.2 force field54 was used to run initial 1 ms Coarse Grained (CG) MD
simulations to permit the assembly and equilibration of 1-palmitoyl-2-oleoyl-
phosphatidylglycerol (POPG):1-palmitoyl-2-oleoyl-phosphatidylethanolamine
(POPE) bilayers around the LntEco and LntPae structures at a 1:3 mole ratio55.
CG molecular systems were converted to atomistic detail using CG2AT56, with
any unfavourable steric contacts between protein and lipid alleviated using
Alchembed57. The atomistic systems equate to a total size of B120,000 atoms and
box dimensions in the region of 115� 115� 115 Å3. The systems were then
equilibrated for 1 ns with the protein restrained before three repeats of 100 ns
of unrestrained atomistic MDS, for each configuration of the molecular system
(see below), using the Gromos53a6 force field58.

For both LntEco and LntPae enzymes, simulations were performed with POPE
bound to either the protonated or thiolate form of the catalytic cysteine. For the

thiolate simulations, the adjacent catalytic glutamate was protonated. Simulations
were also run for the palmitoylated form of the cysteine with and without either
lyso-PE or diacylated FSL-1 bound. A final set of simulations were carried out with
the triacylated FSL-1 product bound. Simulations of the first and second
tetrahedral intermediates were also performed. In each case, the bound molecule
was positioned based on the monoolein coordinates from the X-ray structures. This
equates to a total atomistic simulation time of 2.4 ms per structure. Molecular
systems were neutralized with a 150 mM concentration of NaCl.

All simulations were executed at 37 �C, with protein, lipids and solvent separately
coupled to an external bath, using the velocity-rescale thermostat59. Pressure was
maintained at 1 bar, with a semi-isotropic compressibility of 4� 10� 5 using the
Parrinello-Rahman barostat60. All bonds were constrained with the LINCS
algorithm61. Electrostatics was measured using the Particle Mesh Ewald (PME)
method62, while a cut-off was used for Lennard-Jones parameters, with a Verlet
cutoff scheme to permit GPU calculation of non-bonded contacts. Simulations were
performed with an integration time step of 2 fs. The MDS were analysed using
Gromacs tools, MDAnalysis63 and locally written python and perl scripts.

Homologous sequences were identified in the UniProt database, using a single
iteration of Jackhmmer64, with the default search parameters. This identified 1,116
non-identical Lnt sequences. Percentage conservation for each residue in the
LntEco sequence were mapped to the B-factor column of the LntEco wild-type
structure and shown in Supplementary Fig. 6. A Weblogo representation of the
sequence alignment was created and shown in Supplementary Figs 6 and 12.

PROPKA65 was used to estimate the pKa values of the titratable residues within
the Lnt structures (Supplementary Table 1).

Data availability. The structures of LntEco WT, LntEco C387A and LntPae WT
were deposited into the PDB. The accession codes are 5N6H, 5N6L and 5N6M,
respectively. The data that support the findings of this study are available from the
corresponding author on reasonable request.
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