M. S. Hayden and S. Ghosh, NF-??B, the first quarter-century: remarkable progress and outstanding questions, Genes & Development, vol.26, issue.3, pp.203-234, 2012.
DOI : 10.1101/gad.183434.111

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3278889

G. Courtois and A. Israël, IKK Regulation and Human Genetics, Curr. Top. Microbiol. Immunol, vol.349, pp.73-95, 2011.
DOI : 10.1007/82_2010_98

K. Yamazaki, J. Gohda, A. Kanayama, Y. Miyamoto, H. Sakurai et al., Two Mechanistically and Temporally Distinct NF-?B Activation Pathways in IL-1 Signaling, Science Signaling, vol.2, issue.93, p.66, 2009.
DOI : 10.1126/scisignal.2000387

A. A. Ajibade, Q. Wang, J. Cui, J. Zou, X. Xia et al., TAK1 Negatively Regulates NF-?B and p38 MAP Kinase Activation in Gr-1+CD11b+ Neutrophils, Immunity, vol.36, issue.1, pp.43-54, 2012.
DOI : 10.1016/j.immuni.2011.12.010

S. Rahighi, F. Ikeda, M. Kawasaki, M. Akutsu, N. Suzuki et al., Specific Recognition of Linear Ubiquitin Chains by NEMO Is Important for NF-??B Activation, Cell, vol.136, issue.6, pp.1098-1109, 2009.
DOI : 10.1016/j.cell.2009.03.007

Z. P. Xia, L. Sun, X. Chen, G. Pineda, X. Jiang et al., Direct activation of protein kinases by unanchored polyubiquitin chains, Nature, vol.399, issue.7260, pp.114-119, 2009.
DOI : 10.1128/MCB.19.7.4643

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2747300

C. H. Emmerich, A. Ordureau, S. Strickson, J. S. Arthur, P. G. Pedrioli et al., Activation of the canonical IKK complex by K63/M1-linked hybrid ubiquitin chains, Proceedings of the National Academy of Sciences, vol.8, issue.4, pp.15247-15252, 2013.
DOI : 10.1016/j.dnarep.2009.01.013

H. Wu, Higher-Order Assemblies in a New Paradigm of Signal Transduction, Cell, vol.153, issue.2, pp.287-292, 2013.
DOI : 10.1016/j.cell.2013.03.013

W. Yang, Y. Xia, Y. Cao, Y. Zheng, W. Bu et al., EGFR-Induced and PKC? Monoubiquitylation-Dependent NF-?B Activation Upregulates PKM2 Expression and Promotes Tumorigenesis, Molecular Cell, vol.48, issue.5, pp.771-784, 2012.
DOI : 10.1016/j.molcel.2012.09.028

URL : http://doi.org/10.1016/j.molcel.2012.09.028

C. Makris, J. L. Roberts, K. , and M. , The Carboxyl-Terminal Region of I?B Kinase ? (IKK?) Is Required for Full IKK Activation, Molecular and Cellular Biology, vol.22, issue.18, pp.6573-6581, 2002.
DOI : 10.1128/MCB.22.18.6573-6581.2002

T. T. Huang, S. L. Feinberg, S. Suryanarayanan, and S. Miyamoto, The Zinc Finger Domain of NEMO Is Selectively Required for NF-??B Activation by UV Radiation and Topoisomerase Inhibitors, Molecular and Cellular Biology, vol.22, issue.16, pp.5813-5825, 2002.
DOI : 10.1128/MCB.22.16.5813-5825.2002

E. Laplantine, E. Fontan, J. Chiaravalli, T. Lopez, G. Lakisic et al., NEMO specifically recognizes K63-linked poly-ubiquitin chains through a new bipartite ubiquitin-binding domain, The EMBO Journal, vol.28, issue.19, pp.2885-2895, 2009.
DOI : 10.1016/j.cub.2007.07.041

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2760117

G. Xu, Y. C. Lo, Q. Li, G. Napolitano, X. Wu et al., Crystal structure of inhibitor of ??B kinase ??, Nature, vol.20, issue.7343, pp.325-330, 2011.
DOI : 10.1016/S0968-0004(00)89105-7

F. Cordier, E. Vinolo, M. Véron, M. Delepierre, and F. Agou, Solution Structure of NEMO Zinc Finger and Impact of an Anhidrotic Ectodermal Dysplasia with Immunodeficiency-related Point Mutation, Journal of Molecular Biology, vol.377, issue.5, pp.1419-1432, 2008.
DOI : 10.1016/j.jmb.2008.01.048

URL : https://hal.archives-ouvertes.fr/pasteur-00366221

F. Cordier, O. Grubisha, F. Traincard, M. Véron, M. Delepierre et al., The Zinc Finger of NEMO Is a Functional Ubiquitin-binding Domain, Journal of Biological Chemistry, vol.284, issue.5, pp.2902-2907, 2009.
DOI : 10.1074/jbc.M806655200

URL : https://hal.archives-ouvertes.fr/pasteur-00366746

M. G. Bomar, M. T. Pai, S. R. Tzeng, S. S. Li, and P. Zhou, Structure of the ubiquitin-binding zinc finger domain of human DNA Y-polymerase ?, EMBO reports, vol.29, issue.3, pp.247-251, 2007.
DOI : 10.1038/sj.embor.7400901

Y. Kulathu, M. Akutsu, A. Bremm, K. Hofmann, and D. Komander, Two-sided ubiquitin binding explains specificity of the TAB2 NZF domain, Nature Structural & Molecular Biology, vol.16, issue.12, pp.1328-1330, 2009.
DOI : 10.1128/MCB.02380-06

Y. Sato, A. Yoshikawa, M. Yamashita, A. Yamagata, and S. Fukai, Structural basis for specific recognition of Lys 63-linked polyubiquitin chains by NZF domains of TAB2 and TAB3, The EMBO Journal, vol.364, issue.24, pp.3903-3909, 2009.
DOI : 10.1016/j.cell.2009.01.041

I. Bosanac, I. E. Wertz, B. Pan, C. Yu, S. Kusam et al., Ubiquitin Binding to A20 ZnF4 Is Required for Modulation of NF-?B Signaling, Molecular Cell, vol.40, issue.4, pp.548-557, 2010.
DOI : 10.1016/j.molcel.2010.10.009

F. Tokunaga, H. Nishimasu, R. Ishitani, E. Goto, T. Noguchi et al., Specific recognition of linear polyubiquitin by A20 zinc finger 7 is involved in NF-?B regulation, The EMBO Journal, vol.583, issue.19, pp.3856-3870, 2012.
DOI : 10.1016/j.febslet.2009.09.028

K. Verhelst, I. Carpentier, M. Kreike, L. Meloni, L. Verstrepen et al., A20 inhibits LUBAC-mediated NF-?B activation by binding linear polyubiquitin chains via its zinc finger 7, The EMBO Journal, vol.207, issue.19, pp.3845-3855, 2012.
DOI : 10.1084/jem.20092474

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3463847

O. Grubisha, M. Kaminska, S. Duquerroy, E. Fontan, F. Cordier et al., DARPin-Assisted Crystallography of the CC2-LZ Domain of NEMO Reveals a Coupling between Dimerization and Ubiquitin Binding, Journal of Molecular Biology, vol.395, issue.1, pp.89-104, 2010.
DOI : 10.1016/j.jmb.2009.10.018

URL : https://hal.archives-ouvertes.fr/hal-00512126

J. Gautheron, A. Pescatore, F. Fusco, E. Esposito, S. Yamaoka et al., Identification of a new NEMO/TRAF6 interface affected in incontinentia pigmenti pathology, Human Molecular Genetics, vol.19, issue.16, pp.3138-3149, 2010.
DOI : 10.1093/hmg/ddq222

M. Hubeau, F. Ngadjeua, A. Puel, L. Israel, J. Feinberg et al., New mechanism of X-linked anhidrotic ectodermal dysplasia with immunodeficiency: impairment of ubiquitin binding despite normal folding of NEMO protein, Blood, vol.118, issue.4, pp.926-935, 2011.
DOI : 10.1182/blood-2010-10-315234

J. Chiaravalli, E. Fontan, H. Fsihi, Y. M. Coic, F. Baleux et al., Direct inhibition of NF-?B activation by peptide targeting the NOA ubiquitin binding domain of NEMO, Biochemical Pharmacology, vol.82, issue.9, pp.1163-1174, 2011.
DOI : 10.1016/j.bcp.2011.07.083

M. Schmidt-supprian, W. Bloch, G. Courtois, K. Addicks, A. Israël et al., NEMO/IKK?-Deficient Mice Model Incontinentia Pigmenti, Molecular Cell, vol.5, issue.6, pp.981-992, 2000.
DOI : 10.1016/S1097-2765(00)80263-4

URL : http://doi.org/10.1016/s1097-2765(00)80263-4

E. W. Harhaj, L. Good, G. Xiao, M. Uhlik, M. E. Cvijic et al., Somatic mutagenesis studies of NF-?B signaling in human T cells: evidence for an essential role of IKK? in NF-?B activation by T-cell costimulatory signals and HTLV-I Tax protein, Oncogene, vol.19, issue.11, pp.1448-1456, 2000.
DOI : 10.1038/sj.onc.1203445

E. Vinolo, H. Sebban, A. Chaffotte, A. Israël, G. Courtois et al., A Point Mutation in NEMO Associated with Anhidrotic Ectodermal Dysplasia with Immunodeficiency Pathology Results in Destabilization of the Oligomer and Reduces Lipopolysaccharide- and Tumor Necrosis Factor-mediated NF-?B Activation, Journal of Biological Chemistry, vol.281, issue.10, pp.6334-6348, 2006.
DOI : 10.1074/jbc.M510118200

URL : https://hal.archives-ouvertes.fr/pasteur-00162930

D. Komander, C. J. Lord, H. Scheel, S. Swift, K. Hofmann et al., The Structure of the CYLD USP Domain Explains Its Specificity for Lys63-Linked Polyubiquitin and Reveals a B Box Module, Molecular Cell, vol.29, issue.4, pp.451-464, 2008.
DOI : 10.1016/j.molcel.2007.12.018

P. H. Brown and P. Schuck, Macromolecular Size-and-Shape Distributions by Sedimentation Velocity Analytical Ultracentrifugation, Biophysical Journal, vol.90, issue.12, pp.4651-4661, 2006.
DOI : 10.1529/biophysj.106.081372

URL : http://doi.org/10.1529/biophysj.106.081372

E. An, Point Mutation in NEMO ZF Reveals New Ubiquitin Site

A. G. Salvay, M. Santamaria, M. Le-maire, and C. Ebel, Analytical Ultracentrifugation Sedimentation Velocity for the Characterization of Detergent-Solubilized Membrane Proteins Ca++-ATPase and ExbB, Journal of Biological Physics, vol.44, issue.25, pp.399-419, 2007.
DOI : 10.1016/j.bbagen.2005.05.003

A. Hartwig, T. Schwerdtle, and W. Bal, Biophysical Analysis of the Interaction of Toxic Metal Ions and Oxidants with the Zinc Finger Domain of XPA, Methods Mol. Biol, vol.649, pp.399-410, 2010.
DOI : 10.1007/978-1-60761-753-2_25

S. J. De-vries, M. Van-dijk, and A. M. Bonvin, The HADDOCK web server for data-driven biomolecular docking, Nature Protocols, vol.3, issue.5, pp.883-897, 2010.
DOI : 10.1038/nprot.2010.32

A. Jain, C. A. Ma, S. Liu, M. Brown, J. Cohen et al., Specific missense mutations in NEMO result in hyper-IgM syndrome with hypohydrotic ectodermal dysplasia, Nature Immunology, vol.103, issue.3, pp.223-228, 2001.
DOI : 10.1038/85277

A. S. Shifera and M. S. Horwitz, Mutations in the zinc finger domain of IKK? block the activation of NF-?B and the induction of IL-2 in stimulated T lymphocytes, Molecular Immunology, vol.45, issue.6, pp.1633-1645, 2008.
DOI : 10.1016/j.molimm.2007.09.036

D. A. Sahlender, R. C. Roberts, S. D. Arden, G. Spudich, M. J. Taylor et al., Optineurin links myosin VI to the Golgi complex and is involved in Golgi organization and exocytosis, The Journal of Cell Biology, vol.60, issue.2, pp.285-295, 2005.
DOI : 10.1038/35052055

J. Mankouri, R. Fragkoudis, K. H. Richards, L. F. Wetherill, M. Harris et al., Optineurin Negatively Regulates the Induction of IFN? in Response to RNA Virus Infection, PLoS Pathogens, vol.37, issue.2, p.1000778, 2010.
DOI : 10.1371/journal.ppat.1000778.s003

P. Wild, H. Farhan, D. G. Mcewan, S. Wagner, V. V. Rogov et al., Phosphorylation of the Autophagy Receptor Optineurin Restricts Salmonella Growth, Science, vol.143, issue.5, pp.228-233, 2011.
DOI : 10.1016/j.cell.2010.10.026

S. Papoutsopoulou, A. Symons, T. Tharmalingham, M. P. Belich, F. Kaiser et al., ABIN-2 is required for optimal activation of Erk MAP kinase in innate immune responses, Nature Immunology, vol.197, issue.6, pp.606-615, 2006.
DOI : 10.1128/MCB.15.3.1294

Z. S. Derewenda and P. G. Vekilov, Entropy and surface engineering in protein crystallization, Acta Crystallographica Section D Biological Crystallography, vol.62, issue.1, pp.116-124, 2006.
DOI : 10.1107/S0907444905035237

F. Yang, J. Yamashita, E. Tang, H. L. Wang, K. Guan et al., The Zinc Finger Mutation C417R of I-?B Kinase ? Impairs Lipopolysaccharide- and TNF-Mediated NF-?B Activation through Inhibiting Phosphorylation of the I-?B Kinase ? Activation Loop, The Journal of Immunology, vol.172, issue.4, pp.2446-2452, 2004.
DOI : 10.4049/jimmunol.172.4.2446

B. Schröfelbauer, S. Polley, M. Behar, G. Ghosh, and A. Hoffmann, NEMO Ensures Signaling Specificity of the Pleiotropic IKK? by Directing Its Kinase Activity toward I?B?, Molecular Cell, vol.47, issue.1, pp.111-121, 2012.
DOI : 10.1016/j.molcel.2012.04.020

J. J. Sims, A. Haririnia, B. C. Dickinson, D. Fushman, and R. E. Cohen, Avid interactions underlie the Lys63-linked polyubiquitin binding specificities observed for UBA domains, Nature Structural & Molecular Biology, vol.399, issue.8, pp.883-889, 2009.
DOI : 10.4161/auto.5172

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2744598

D. Fushman and O. Walker, Exploring the Linkage Dependence of Polyubiquitin Conformations Using Molecular Modeling, Journal of Molecular Biology, vol.395, issue.4, pp.803-814, 2010.
DOI : 10.1016/j.jmb.2009.10.039

Y. C. Lo, S. C. Lin, C. C. Rospigliosi, D. B. Conze, C. J. Wu et al., Structural Basis for Recognition of Diubiquitins by NEMO, Molecular Cell, vol.33, issue.5, pp.602-615, 2009.
DOI : 10.1016/j.molcel.2009.01.012

J. J. Sims, F. Scavone, E. M. Cooper, L. A. Kane, R. J. Youle et al., Polyubiquitin-sensor proteins reveal localization and linkage-type dependence of cellular ubiquitin signaling, Nature Methods, vol.14, issue.3, pp.303-309, 2012.
DOI : 10.1126/science.1116598

T. Kensche, F. Tokunaga, F. Ikeda, E. Goto, K. Iwai et al., Analysis of Nuclear Factor-?B (NF-?B) Essential Modulator (NEMO) Binding to Linear and Lysine-linked Ubiquitin Chains and Its Role in the Activation of NF-?B, Journal of Biological Chemistry, vol.287, issue.28, pp.23626-23634, 2012.
DOI : 10.1074/jbc.M112.347195

K. Hadian, R. A. Griesbach, S. Dornauer, T. M. Wanger, D. Nagel et al., NF-?B Essential Modulator (NEMO) Interaction with Linear and Lys-63 Ubiquitin Chains Contributes to NF-?B Activation, Journal of Biological Chemistry, vol.286, issue.29, pp.26107-26117, 2011.
DOI : 10.1074/jbc.M111.233163

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3138271

G. Richarme, Associative properties of the Escherichia coli galactose-binding protein and maltose-binding protein, Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, vol.748, issue.1, pp.476-481, 1982.
DOI : 10.1016/0167-4838(83)90032-8

F. J. Ivins, M. G. Montgomery, S. J. Smith, A. C. Morris-davies, I. A. Taylor et al., NEMO oligomerization and its ubiquitin-binding properties, Biochemical Journal, vol.5, issue.2, pp.243-251, 2009.
DOI : 10.1016/j.molcel.2008.04.029

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2708934

J. J. Sims and R. E. Cohen, Linkage-Specific Avidity Defines the Lysine 63-Linked Polyubiquitin-Binding Preference of Rap80, Molecular Cell, vol.33, issue.6, pp.775-783, 2009.
DOI : 10.1016/j.molcel.2009.02.011

A. Hoffmann, B. Bukau, and G. Kramer, Structure and function of the molecular chaperone Trigger Factor, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1803, issue.6, pp.650-661, 2010.
DOI : 10.1016/j.bbamcr.2010.01.017