G. Screaton, J. Mongkolsapaya, S. Yacoub, and C. Roberts, New insights into the immunopathology and control of dengue virus infection, Nature Reviews Immunology, vol.6, issue.12, pp.745-759, 2015.
DOI : 10.1126/scitranslmed.3003888

S. Bhatt, The global distribution and burden of dengue, Nature, vol.62, issue.7446, pp.504-507, 2013.
DOI : 10.1016/S0065-308X(05)62004-0

M. G. Guzman, D. J. Gubler, A. Izquierdo, E. Martinez, and S. B. Halstead, Dengue infection, Nature Reviews Disease Primers, vol.52, p.16055, 2016.
DOI : 10.1038/nrdp.2016.55

C. P. Simmons, J. J. Farrar, V. Nguyen, B. Wills, and . Dengue, Dengue, New England Journal of Medicine, vol.366, issue.15, pp.1423-1432, 2012.
DOI : 10.1056/NEJMra1110265

URL : https://hal.archives-ouvertes.fr/pasteur-01176423

G. Barba-spaeth, Erratum: Structural basis of potent Zika?dengue virus antibody cross-neutralization, Nature, vol.536, issue.7628, pp.48-53, 2016.
DOI : 10.1038/nature19780

M. G. Guzman, M. Alvarez, and S. B. Halstead, Secondary infection as a risk factor for dengue hemorrhagic fever/dengue shock syndrome: an historical perspective and role of antibody-dependent enhancement of infection, Archives of Virology, vol.6, issue.Suppl 1, pp.1445-1459, 2013.
DOI : 10.1371/journal.pntd.0001568

S. B. Halstead, Neutralization and Antibody-Dependent Enhancement of Dengue Viruses, Adv. Virus Res, vol.60, pp.421-467, 2003.
DOI : 10.1016/S0065-3527(03)60011-4

M. Beltramello, The Human Immune Response to Dengue Virus Is Dominated by Highly Cross-Reactive Antibodies Endowed with Neutralizing and Enhancing Activity, Cell Host & Microbe, vol.8, issue.3, pp.271-283, 2010.
DOI : 10.1016/j.chom.2010.08.007

URL : https://hal.archives-ouvertes.fr/pasteur-00530282

R. De-alwis, In-Depth Analysis of the Antibody Response of Individuals Exposed to Primary Dengue Virus Infection, PLoS Neglected Tropical Diseases, vol.6, issue.6, p.1188, 2011.
DOI : 10.1371/journal.pntd.0001188.s002

R. De-alwis, Identification of human neutralizing antibodies that bind to complex epitopes on dengue virions, Proc. Natl Acad. Sci. USA, pp.7439-7444, 2012.
DOI : 10.1128/JCM.00827-07

W. Dejnirattisai, A new class of highly potent, broadly neutralizing antibodies isolated from viremic patients infected with dengue virus, Nature Immunology, vol.69, issue.2, pp.170-177, 2015.
DOI : 10.1016/j.jsb.2012.09.006

G. Fibriansah, A potent anti-dengue human antibody preferentially recognizes the conformation of E protein monomers assembled on the virus surface, EMBO Molecular Medicine, vol.12, pp.358-371, 2014.
DOI : 10.1016/j.str.2004.06.019

S. A. Smith, Human Monoclonal Antibodies Derived From Memory B Cells Following Live Attenuated Dengue Virus Vaccination or Natural Infection Exhibit Similar Characteristics, The Journal of Infectious Diseases, vol.207, issue.12, pp.1898-1908, 2013.
DOI : 10.1093/infdis/jit119

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3654755

E. P. Teoh, The Structural Basis for Serotype-Specific Neutralization of Dengue Virus by a Human Antibody, Science Translational Medicine, vol.25, issue.13, pp.139-183, 2012.
DOI : 10.1002/jcc.20084

L. Priyamvada, Human antibody responses after dengue virus infection are highly cross-reactive to Zika virus, Proc. Natl Acad. Sci. USA, pp.7852-7857, 2016.
DOI : 10.1128/JVI.01963-09

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4948328

T. Oliphant, Antibody Recognition and Neutralization Determinants on Domains I and II of West Nile Virus Envelope Protein, Journal of Virology, vol.80, issue.24, pp.12149-12159, 2006.
DOI : 10.1128/JVI.01732-06

S. J. Balsitis, Lethal Antibody Enhancement of Dengue Disease in Mice Is Prevented by Fc Modification, PLoS Pathogens, vol.86, issue.6, p.1000790, 2010.
DOI : 10.1371/journal.ppat.1000790.s005

I. A. Rodenhuis-zybert, A Fusion-Loop Antibody Enhances the Infectious Properties of Immature Flavivirus Particles, Journal of Virology, vol.85, issue.22, pp.11800-11808, 2011.
DOI : 10.1128/JVI.05237-11

W. Dejnirattisai, Cross-Reacting Antibodies Enhance Dengue Virus Infection in Humans, Science, vol.5, issue.7, pp.745-748, 2010.
DOI : 10.1038/nrmicro1690

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3837288

W. Dejnirattisai, Dengue virus sero-cross-reactivity drives antibody-dependent enhancement of infection with zika virus, Nature Immunology, vol.534, issue.9, pp.1102-1108, 2016.
DOI : 10.1038/nm887

A. Rouvinski, Recognition determinants of broadly neutralizing human antibodies against dengue viruses, Nature, vol.66, issue.7545, pp.109-113, 2015.
DOI : 10.1038/nature14130

URL : https://hal.archives-ouvertes.fr/hal-01148962

M. V. Cherrier, Structural basis for the preferential recognition of immature flaviviruses by a fusion-loop antibody, The EMBO Journal, vol.12, issue.20, pp.3269-3276, 2009.
DOI : 10.1038/emboj.2009.245

L. Dai, Structures of the Zika Virus Envelope Protein and Its Complex with a Flavivirus Broadly Protective Antibody, Cell Host & Microbe, vol.19, issue.5, pp.696-704, 2016.
DOI : 10.1016/j.chom.2016.04.013

R. R. Thangudu, Native and modeled disulfide bonds in proteins: Knowledge-based approaches toward structure prediction of disulfide-rich polypeptides, Proteins: Structure, Function, and Bioinformatics, vol.244, issue.4, pp.866-879, 2005.
DOI : 10.1007/978-1-4613-1571-1_17

G. Wengler, G. Wengler, and F. A. Rey, The Isolation of the Ectodomain of the Alphavirus E1 Protein as a Soluble Hemagglutinin and Its Crystallization, Virology, vol.257, issue.2, pp.472-482, 1999.
DOI : 10.1006/viro.1999.9661

Y. Modis, S. Ogata, D. Clements, and S. C. Harrison, Structure of the dengue virus envelope protein after membrane fusion, Nature, vol.427, issue.6972, pp.313-319, 2004.
DOI : 10.1038/nature02165

W. B. Messer, ABSTRACT, Journal of Virology, vol.90, issue.10, pp.5090-5097, 2016.
DOI : 10.1128/JVI.00155-16

J. J. Cockburn, Mechanism of Dengue Virus Broad Cross-Neutralization by a Monoclonal Antibody, Structure, vol.20, issue.2, pp.303-314, 2012.
DOI : 10.1016/j.str.2012.01.001

G. Fibriansah, Cryo-EM structure of an antibody that neutralizes dengue virus type 2 by locking E protein dimers, Science, vol.8, issue.3, pp.88-91, 2015.
DOI : 10.1016/j.chom.2010.08.007

G. Fibriansah, A highly potent human antibody neutralizes dengue virus serotype 3 by binding across three surface proteins, Nature Communications, vol.16, p.6341, 2015.
DOI : 10.1038/ncomms7341

URL : http://doi.org/10.1038/ncomms7341

J. Junjhon, Influence of pr-M Cleavage on the Heterogeneity of Extracellular Dengue Virus Particles, Journal of Virology, vol.84, issue.16, pp.8353-8358, 2010.
DOI : 10.1128/JVI.00696-10

K. A. Dowd, C. A. Jost, A. P. Durbin, S. S. Whitehead, and T. C. Pierson, A Dynamic Landscape for Antibody Binding Modulates Antibody-Mediated Neutralization of West Nile Virus, PLoS Pathogens, vol.2, issue.6, p.1002111, 2011.
DOI : 10.1371/journal.ppat.1002111.s006

G. Fibriansah, Structural Changes in Dengue Virus When Exposed to a Temperature of 37??C, Journal of Virology, vol.87, issue.13, pp.7585-7592, 2013.
DOI : 10.1128/JVI.00757-13

X. Zhang, Dengue structure differs at the temperatures of its human and mosquito hosts, Proc. Natl Acad. Sci. USA, pp.6795-6799, 2013.
DOI : 10.1128/JVI.74.7.3011-3019.2000

L. Goo, ABSTRACT, mBio, vol.7, issue.5, pp.1396-01316, 2016.
DOI : 10.1128/mBio.01396-16

V. A. Kostyuchenko, Structure of the thermally stable Zika virus, Nature, vol.533, pp.425-428, 2016.
DOI : 10.1107/S0907444998003254

S. R. Hadinegoro, Efficacy and Long-Term Safety of a Dengue Vaccine in Regions of Endemic Disease, New England Journal of Medicine, vol.373, issue.13, pp.1195-1206, 2015.
DOI : 10.1056/NEJMoa1506223

W. Dejnirattisai, A Complex Interplay among Virus, Dendritic Cells, T Cells, and Cytokines in Dengue Virus Infections, The Journal of Immunology, vol.181, issue.9, pp.5865-5874, 2008.
DOI : 10.4049/jimmunol.181.9.5865

N. Sittisombut, Lack of augmenting effect of interferon-? on dengue virus multiplication in human peripheral blood monocytes, Journal of Medical Virology, vol.366, issue.1, pp.43-49, 1995.
DOI : 10.1089/jir.1992.12.87

P. R. Evans and G. N. Murshudov, How good are my data and what is the resolution?, Acta Crystallographica Section D Biological Crystallography, vol.67, issue.7, pp.1204-1214, 2013.
DOI : 10.1107/S0907444910045749

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3689523

M. D. Winn, 4 suite and current developments, Acta Crystallographica Section D Biological Crystallography, vol.65, issue.4, pp.235-242, 2011.
DOI : 10.1107/S0907444909037044

P. A. Karplus and K. Diederichs, Assessing and maximizing data quality in macromolecular crystallography, Current Opinion in Structural Biology, vol.34, pp.60-68, 2015.
DOI : 10.1016/j.sbi.2015.07.003

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4684713

A. J. Mccoy, crystallographic software, Journal of Applied Crystallography, vol.40, issue.4, pp.658-674, 2007.
DOI : 10.1107/S0021889807021206

M. D. Winn, G. N. Murshudov, and M. Z. Papiz, Macromolecular TLS Refinement in REFMAC at Moderate Resolutions, Methods Enzymol, vol.374, pp.300-321, 2003.
DOI : 10.1016/S0076-6879(03)74014-2

C. Liu and Y. Xiong, Electron Density Sharpening as a General Technique in Crystallographic Studies, Journal of Molecular Biology, vol.426, issue.4, pp.980-993, 2014.
DOI : 10.1016/j.jmb.2013.11.014

V. B. Chen, : all-atom structure validation for macromolecular crystallography, Acta Crystallographica Section D Biological Crystallography, vol.285, issue.1, pp.12-21, 2010.
DOI : 10.1107/S0907444909042073

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2803126/pdf

A. We, W. Kasinrerk, C. Putthikhunt-for-anti-dengue-anti-domiii-mab, 2. J. Freire, and G. , Bowler for help and discussion; the staff at the crystallogenesis and chemogenomic & biological screening facilities at Institut Pasteur; the staff at beamlines PX1 and PX2 at SOLEIL synchrotron, the staff at beamlines ID23-1, ID23-2, ID29 and IB30B at the European Synchrotron Radiation Facility

F. Agou, I. Pasteur-for-the, M. A. Systemf, J. M. , and G. R. , We acknowledge support from the European Commission FP7 Programme for the DEN- FREE project under Grant Agreement number 282 378FP7S.); the 'Integrative Biology of Emerging Infectious Diseases' Labex (Laboratoire d'Excellence) grant number ANR-10-LABX-62-IBEID (French Government's 'Investissements d'Avenir' program ) (F.A.R.) the National Institute for Health Research Biomedical Research Centre, Funding Scheme, UK (G.R.S.); and the NEUTRAVIR grant from Région Ile-de-France (DIM-Maladies Infectieuses) (F.A.R.). G.R.S. is a Wellcome Trust Senior Investigator

F. A. Author, G. R. , J. M. Designed-the-experiments, P. G. , F. A. et al., designed the cysteine mutants; A.R. and A.S. produced and purified the recombinant DENV2-3-4 sE proteins and the antibody fragment A11W. produced antibodies and performed binding experiments, V. grew and optimized the crystals

M. V. , A. R. , P. G. , S. D. , A. S. Collected-synchrotron-data-;-m.-c et al., processed the data, built, refined and analysed the atomic modelsC. made the MALS experiments; G.B.S. did the floatation experiments with liposomes wrote the paper with the help of