G. Courtois and A. Israël, IKK Regulation and Human Genetics, Curr. Top. Microbiol. Immunol, vol.349, pp.73-95, 2011.
DOI : 10.1007/82_2010_98

L. Deng, C. Wang, E. Spencer, L. Yang, A. Braun et al., Activation of the I?B Kinase Complex by TRAF6 Requires a Dimeric Ubiquitin-Conjugating Enzyme Complex and a Unique Polyubiquitin Chain, Cell, vol.103, issue.2, pp.351-361, 2000.
DOI : 10.1016/S0092-8674(00)00126-4

F. Drees, A. Reilein, and W. J. Nelson, Cell-adhesion assays: fabrication of an E-cadherin substratum and isolation of lateral and Basal membrane patches, Methods Mol. Biol, vol.294, pp.303-320, 2005.

J. N. Dynek, T. Goncharov, E. C. Dueber, A. V. Fedorova, A. Izrael-tomasevic et al., c-IAP1 and UbcH5 promote K11-linked polyubiquitination of RIP1 in TNF signalling, The EMBO Journal, vol.7, issue.24, pp.4198-4209
DOI : 10.1038/nsmb.1605

C. H. Emmerich, A. Ordureau, S. Strickson, J. S. Arthur, P. G. Pedrioli et al., Activation of the canonical IKK complex by K63/M1-linked hybrid ubiquitin chains, Proc. Natl. Acad. Sci. USA, pp.15247-15252, 2013.
DOI : 10.1016/j.dnarep.2009.01.013

N. Frias-staheli, N. V. Giannakopoulos, M. Kikkert, S. L. Taylor, A. Bridgen et al., Ovarian Tumor Domain-Containing Viral Proteases Evade Ubiquitin- and ISG15-Dependent Innate Immune Responses, Cell Host & Microbe, vol.2, issue.6, pp.404-416, 2007.
DOI : 10.1016/j.chom.2007.09.014

URL : http://doi.org/10.1016/j.chom.2007.09.014

S. Ghosh and M. Karin, Missing Pieces in the NF-??B Puzzle, Cell, vol.109, issue.2, pp.81-96, 2002.
DOI : 10.1016/S0092-8674(02)00703-1

T. L. Haas, C. H. Emmerich, B. Gerlach, A. C. Schmukle, S. M. Cordier et al., Recruitment of the Linear Ubiquitin Chain Assembly Complex Stabilizes the TNF-R1 Signaling Complex and?Is Required for TNF-Mediated Gene Induction, Molecular Cell, vol.36, issue.5, pp.831-844, 2009.
DOI : 10.1016/j.molcel.2009.10.013

M. S. Hayden and S. Ghosh, NF-?B, the first quarter-century: remarkable progress and outstanding questions, Genes & Development, vol.26, issue.3, pp.203-234, 2012.
DOI : 10.1101/gad.183434.111

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3278889

K. Iwai, Diverse ubiquitin signaling in NF-?B activation, Trends in Cell Biology, vol.22, issue.7, pp.355-364, 2012.
DOI : 10.1016/j.tcb.2012.04.001

Z. Jiang, J. Ninomiya-tsuji, Y. Qian, K. Matsumoto, and X. Li, Interleukin-1 (IL-1) Receptor-Associated Kinase-Dependent IL-1-Induced Signaling Complexes Phosphorylate TAK1 and TAB2 at the Plasma Membrane and Activate TAK1 in the Cytosol, Molecular and Cellular Biology, vol.22, issue.20, pp.7158-71677158, 2002.
DOI : 10.1128/MCB.22.20.7158-7167.2002

T. Kirisako, K. Kamei, S. Murata, M. Kato, H. Fukumoto et al., A ubiquitin ligase complex assembles linear polyubiquitin chains, The EMBO Journal, vol.82, issue.20, pp.4877-4887, 2006.
DOI : 10.1038/ncb952

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1618115

E. Laplantine, E. Fontan, J. Chiaravalli, T. Lopez, G. Lakisic et al., NEMO specifically recognizes K63-linked poly-ubiquitin chains through a new bipartite ubiquitin-binding domain, The EMBO Journal, vol.28, issue.19, 2009.
DOI : 10.1016/j.cub.2007.07.041

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2760117

X. Li, M. Commane, C. Burns, K. Vithalani, Z. Cao et al., Mutant Cells That Do Not Respond to Interleukin-1 (IL-1) Reveal a Novel Role for IL-1 Receptor-Associated Kinase, Molecular and Cellular Biology, vol.19, issue.7, pp.4643-4652, 1999.
DOI : 10.1128/MCB.19.7.4643

Y. C. Lo, S. C. Lin, C. C. Rospigliosi, D. B. Conze, C. J. Wu et al., Structural Basis for Recognition of Diubiquitins by NEMO, Molecular Cell, vol.33, issue.5, pp.602-615, 2009.
DOI : 10.1016/j.molcel.2009.01.012

E. M. Manders, F. J. Verbeek, J. A. Matsumoto, M. L. , K. C. Dong et al., Measurement of co-localization of objects in dual-colour confocal images, Journal of Microscopy, vol.50, issue.3, pp.375-382134, 1993.
DOI : 10.1111/j.1365-2818.1993.tb03313.x

A. Ordureau, H. Smith, M. Windheim, E. Peggie, N. Carrick et al., The IRAK-catalysed activation of the E3 ligase function of Pellino isoforms induces the Lys63-linked polyubiquitination of IRAK1 Infectious diseases in patients with IRAK-4, MyD88, NEMO, or I?B? deficiency, Biochem. J. Clin. Microbiol. Rev, vol.409, issue.24, pp.43-52490, 2008.

H. Qian, M. P. Sheetz, and E. L. Elson, Single particle tracking. Analysis of diffusion and flow in two-dimensional systems, Biophysical Journal, vol.60, issue.4, pp.910-921, 1991.
DOI : 10.1016/S0006-3495(91)82125-7

B. Boisson, E. Laplantine, C. Prando, S. Giliani, E. Israelsson et al., Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency, Nature Immunology, vol.7, issue.12, pp.1178-1186, 2012.
DOI : 10.1016/j.immuni.2008.05.012

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3514453

Z. J. Chen, Ubiquitination in signaling to and activation of IKK, Immunological Reviews, vol.472, issue.1, pp.95-106, 2012.
DOI : 10.1111/j.1600-065X.2012.01108.x

D. B. Conze, C. J. Wu, J. A. Thomas, A. Landstrom, and J. D. , Lys63-Linked Polyubiquitination of IRAK-1 Is Required for Interleukin-1 Receptor- and Toll-Like Receptor-Mediated NF-??B Activation, Molecular and Cellular Biology, vol.28, issue.10, pp.3538-354702098, 2008.
DOI : 10.1128/MCB.02098-07

S. V. Costes, D. Daelemans, E. H. Cho, Z. Dobbin, G. Pavlakis et al., Automatic and Quantitative Measurement of Protein-Protein Colocalization in Live Cells, Biophysical Journal, vol.86, issue.6, pp.3993-4003, 2004.
DOI : 10.1529/biophysj.103.038422

S. Rahighi, F. Ikeda, M. Kawasaki, M. Akutsu, N. Suzuki et al., Specific Recognition of Linear Ubiquitin Chains by NEMO Is Important for NF-??B Activation, Cell, vol.136, issue.6, pp.1098-1109, 2009.
DOI : 10.1016/j.cell.2009.03.007

J. Ruland, Return to homeostasis: downregulation of NF-?B responses, Nature Immunology, vol.179, issue.8, pp.709-714, 2011.
DOI : 10.1126/science.1198946

J. Schindelin, I. Arganda-carreras, E. Frise, V. Kaynig, M. Longair et al., Fiji: an open-source platform for biological-image analysis, Nature Methods, vol.27, issue.7, pp.676-682, 2012.
DOI : 10.1038/nmeth.2019

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3855844

A. Smahi, G. Courtois, P. Vabres, S. Yamaoka, S. Heuertz et al., Genomic rearrangement in NEMO impairs NF-kappaB activation and is a cause of incontinentia pigmenti, Nature, vol.405, pp.466-472, 2000.

S. C. Sun, Non-canonical NF-?B signaling pathway, Cell Research, vol.175, issue.1, pp.71-85, 2011.
DOI : 10.1073/pnas.0907200106

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3193406

E. D. Tang, C. Y. Wang, Y. Xiong, K. L. Guan, F. et al., A role for NFkappaB essential modifier/IkappaB kinase-gamma (NEMO/IKKgamma) ubiquitination in the activation of the IkappaB kinase complex by tumor necrosis factor-alpha Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation, J. Biol. Chem. Nat. Cell Biol, vol.278, issue.11, pp.37297-37305123, 2003.

L. Verstrepen, T. Bekaert, T. L. Chau, J. Tavernier, A. Chariot et al., TLR-4, IL-1R and TNF-R signaling to NF-??B: variations on a common theme, Cellular and Molecular Life Sciences, vol.65, issue.19, pp.2964-2978, 2008.
DOI : 10.1007/s00018-008-8064-8

H. Von-bernuth, C. Picard, Z. Jin, R. Pankla, H. Xiao et al., Pyogenic Bacterial Infections in Humans with MyD88 Deficiency, Science, vol.3, issue.3, pp.691-696, 2008.
DOI : 10.1371/journal.ppat.0030026

URL : https://hal.archives-ouvertes.fr/pasteur-01375224

M. C. Walsh, G. K. Kim, P. L. Maurizio, E. E. Molnar, and Y. Choi, TRAF6 autoubiquitination-independent activation of the NFkappaB and MAPK pathways in response to IL-1 and RANKL, PLoS ONE, vol.3, 2008.

R. Weil, K. Schwamborn, A. Alcover, C. Bessia, V. D. Bartolo et al., Induction of the NF-kappaB cascade by recruitment of the scaffold molecule NEMO to the T cell receptor Interleukin-1 (IL-1) induces the Lys63-linked polyubiquitination of IL-1 receptorassociated kinase 1 to facilitate NEMO binding and the activation of IkappaBalpha kinase, Immunity. Mol. Cell. Biol, vol.18, issue.28, pp.13-261783, 2003.

H. Wu, Higher-Order Assemblies in a New Paradigm of Signal Transduction, Cell, vol.153, issue.2, pp.287-292, 2013.
DOI : 10.1016/j.cell.2013.03.013

C. J. Wu, D. B. Conze, T. Li, S. M. Srinivasula, and J. D. , NEMO is a sensor of Lys 63-linked polyubiquitination and functions in NF-?B activation, Nature Cell Biology, vol.101, issue.4, pp.398-406, 2006.
DOI : 10.1038/ncb1384

M. Xu, B. Skaug, W. Zeng, and Z. J. Chen, A Ubiquitin Replacement Strategy in Human Cells Reveals Distinct Mechanisms of IKK Activation by TNF? and IL-1?, Molecular Cell, vol.36, issue.2, pp.302-314, 2009.
DOI : 10.1016/j.molcel.2009.10.002

M. Yamamoto, T. Okamoto, K. Takeda, S. Sato, H. Sanjo et al., Key function for the Ubc13 E2 ubiquitin-conjugating enzyme in immune receptor signaling, Nature Immunology, vol.430, issue.9, pp.962-9701231, 1998.
DOI : 10.1038/ni1367

S. Q. Zhang, A. Kovalenko, G. Cantarella, and D. Wallach, Recruitment of the IKK Signalosome to the p55 TNF Receptor, Immunity, vol.12, issue.3, pp.301-311, 2000.
DOI : 10.1016/S1074-7613(00)80183-1