H. Marshall, K. Ronen, C. Berry, M. Llano, H. Sutherland et al., Role of PSIP1/LEDGF/p75 in lentiviral infectivity and integration targeting Identification and characterization of the chromatin-binding domains of the HIV-1 integrase interactor LEDGF/p75, PLoS ONE J Mol Biol, vol.2, issue.360, pp.760-773, 2006.

. 13-shun, . Mc, Y. Botbol, X. Li, D. Nunzio et al., Identification and Characterization of PWWP Domain Residues Critical for LEDGF/p75 Chromatin Binding and Human Immunodeficiency Virus Type 1 Infectivity, Journal of Virology, vol.82, issue.23, pp.11555-11567, 2008.
DOI : 10.1128/JVI.01561-08

P. Cherepanov, E. Devroe, . Silver, and A. Engelman, Identification of an Evolutionarily Conserved Domain in Human Lens Epithelium-derived Growth Factor/Transcriptional Co-activator p75 (LEDGF/p75) That Binds HIV-1 Integrase, Journal of Biological Chemistry, vol.279, issue.47, pp.48883-48892, 2004.
DOI : 10.1074/jbc.M406307200

R. Silvers, . Smith, M. Schowalter, S. Litwin, Z. Liang et al., Modification of Integration Site Preferences of an HIV-1-Based Vector by Expression of a Novel Synthetic Protein, Human Gene Therapy, vol.21, issue.3, pp.337-349, 2010.
DOI : 10.1089/hum.2009.134

R. 17-gijsbers, K. Ronen, S. Vets, N. Malani, D. Rijck et al., LEDGF Hybrids Efficiently Retarget Lentiviral Integration Into Heterochromatin, Molecular Therapy, vol.18, issue.3, pp.552-560, 2010.
DOI : 10.1038/mt.2010.36

. Lauberth, . Sm, T. Nakayama, X. Wu, A. Ferris et al., H3K4me3 Interactions with TAF3 Regulate Preinitiation Complex Assembly and Selective Gene Activation, Cell, vol.152, issue.5, pp.1021-1036, 2013.
DOI : 10.1016/j.cell.2013.01.052

URL : http://doi.org/10.1016/j.cell.2013.01.052

N. Vandegraaff, E. Devroe, F. Turlure, . Silver, and A. Engelman, Biochemical and genetic analyses of integrase-interacting proteins lens epithelium-derived growth factor (LEDGF)/p75 and hepatoma-derived growth factor related protein 2 (HRP2) in preintegration complex function and HIV-1 replication, Virology, vol.346, issue.2, pp.415-426, 2006.
DOI : 10.1016/j.virol.2005.11.022

M. Beck, A. Schmidt, J. Malmstroem, M. Claassen, A. Ori et al., The quantitative proteome of a human cell line, Molecular Systems Biology, vol.5, issue.1, p.549, 2011.
DOI : 10.1002/1522-2683(200209)23:18<3205::AID-ELPS3205>3.0.CO;2-Y

S. Hare, . Shun, . Mc, . Gupta, . Ss et al., A novel co-crystal structure affords the design of gain-of-function lentiviral integrase mutants in the presence of modified PSIP1/LEDGF/p75 The interaction between lentiviral integrase and LEDGF: structural and functional insights, PLoS Pathog Viruses, vol.5, issue.1, pp.780-801, 2009.

X. Li, L. Krishnan, . Cherepanov, and A. Engelman, Structural biology of retroviral DNA integration, Virology, vol.411, issue.2, pp.194-205, 2011.
DOI : 10.1016/j.virol.2010.12.008

G. Maertens, P. Cherepanov, W. Pluymers, K. Busschots, D. Clercq et al., LEDGF/p75 Is Essential for Nuclear and Chromosomal Targeting of HIV-1 Integrase in Human Cells, Journal of Biological Chemistry, vol.71, issue.35, pp.33528-33539, 2003.
DOI : 10.1006/viro.1996.0105

P. Cherepanov, A. Ambrosio, S. Rahman, . Ellenberger, and A. Engelman, Structural basis for the recognition between HIV-1 integrase and transcriptional coactivator p75, Proceedings of the National Academy of Sciences, vol.15, issue.4, pp.17308-17313, 2005.
DOI : 10.1093/bioinformatics/15.4.305

P. Cherepanov, . Sun, . Zy, S. Rahman, G. Maertens et al., Solution structure of the HIV-1 integrase-binding domain in LEDGF/p75, Nature Structural & Molecular Biology, vol.2, issue.6, pp.526-532, 2005.
DOI : 10.1016/0263-7855(96)00009-4

M. Llano, . Saenz, . Dt, A. Meehan, P. Wongthida et al., An Essential Role for LEDGF/p75 in HIV Integration, Science, vol.314, issue.5798, pp.461-464, 2006.
DOI : 10.1126/science.1132319

J. Garcia-rivera, . Bueno, . Mt, E. Morales, J. Kugelman et al., Implication of Serine Residues 271, 273, and 275 in the Human Immunodeficiency Virus Type 1 Cofactor Activity of Lens Epithelium-Derived Growth Factor/p75, Journal of Virology, vol.84, issue.2, pp.740-752, 2010.
DOI : 10.1128/JVI.01043-09

. Bieniasz, . Pd, . Cullen, and . Br, Multiple Blocks to Human Immunodeficiency Virus Type 1 Replication in Rodent Cells, Journal of Virology, vol.74, issue.21, pp.9868-9877, 2000.
DOI : 10.1128/JVI.74.21.9868-9877.2000

R. Lu, A. Limón, E. Devroe, P. Silver, . Cherepanov et al., Class II Integrase Mutants with Changes in Putative Nuclear Localization Signals Are Primarily Blocked at a Postnuclear Entry Step of Human Immunodeficiency Virus Type 1 Replication, Journal of Virology, vol.78, issue.23, pp.12735-12746, 2004.
DOI : 10.1128/JVI.78.23.12735-12746.2004

. Butler, . Sl, . Hansen, . Bushman, and . Fd, A quantitative assay for HIV DNA integration in vivo, Nature Medicine, vol.7, issue.5, pp.631-634, 2001.
DOI : 10.1038/87979

A. Brussel and P. Sonigo, Analysis of Early Human Immunodeficiency Virus Type 1 DNA Synthesis by Use of a New Sensitive Assay for Quantifying Integrated Provirus, Journal of Virology, vol.77, issue.18, pp.10119-10124, 2003.
DOI : 10.1128/JVI.77.18.10119-10124.2003

A. Engelman, In Vivo Analysis of Retroviral Integrase Structure and Function, Adv Virus Res, vol.52, pp.411-426, 1999.
DOI : 10.1016/S0065-3527(08)60309-7

. 35-wiskerchen and M. Muesing, Human immunodeficiency virus type 1, 1995.

. Leavitt, . Ad, G. Robles, A. , and V. , Human immunodeficiency virus type 1 integrase mutants retain in vitro integrase activity yet fail to integrate viral DNA efficiently during infection, HE J Virol, vol.70, pp.721-728, 1996.

. Hazuda, . Dj, P. Felock, M. Witmer, A. Wolfe et al., Inhibitors of Strand Transfer That Prevent Integration and Inhibit HIV-1 Replication in Cells, Science, vol.287, issue.5453, pp.646-650, 2000.
DOI : 10.1126/science.287.5453.646

L. Naldini, Ex vivo gene transfer and correction for cell-based therapies, Nature Reviews Genetics, vol.2, issue.5, pp.301-315, 2011.
DOI : 10.1038/nrg2985

M. Cavazzana-calvo, E. Payen, O. Negre, G. Wang, K. Hehir et al., Transfusion independence and HMGA2 activation after gene therapy of human ??-thalassaemia, Nature, vol.6, issue.7313, pp.318-322, 2010.
DOI : 10.1093/nar/gkn125

URL : https://hal.archives-ouvertes.fr/cea-00905288

D. Cesana, J. Sgualdino, L. Rudilosso, S. Merella, . Naldini et al., Whole transcriptome characterization of aberrant splicing events induced by lentiviral vector integrations, Journal of Clinical Investigation, vol.122, issue.5, pp.1667-1676, 2012.
DOI : 10.1172/JCI62189DS1

B. Taddeo, F. Carlini, . Verani, and A. Engelman, Reversion of a human immunodeficiency virus type 1 integrase mutant at a second site restores enzyme function and virus infectivity, J Virol, vol.70, pp.8277-8284, 1996.

X. Li, G. Qin, Z. Chen, . Gu, and L. Qu, A gain-of-function mutation of transcriptional factor PTL results in curly leaves, dwarfism and male sterility by affecting auxin homeostasis, Plant Molecular Biology, vol.4, issue.3, pp.315-327, 2008.
DOI : 10.1007/s11103-007-9272-6

S. Vets, D. Rijck, J. Brendel, C. Grez, M. Bushman et al., Transient Expression of an LEDGF/p75 Chimera Retargets Lentivector Integration and Functionally Rescues in a Model for X-CGD, Molecular Therapy - Nucleic Acids, vol.2, p.77, 2013.
DOI : 10.1038/mtna.2013.4

T. Wilkinson, K. Januszyk, . Phillips, . Ml, . Tekeste et al., Identifying and Characterizing a Functional HIV-1 Reverse Transcriptase-binding Site on Integrase, Journal of Biological Chemistry, vol.284, issue.12, pp.7931-7939, 2009.
DOI : 10.1074/jbc.M806241200

J. Wang, H. Ling, Y. Craigie, and R. , Structure of a two-domain fragment of HIV-1 integrase: implications for domain organization in the intact protein, The EMBO Journal, vol.20, issue.24, pp.7333-7343, 2001.
DOI : 10.1093/emboj/20.24.7333

K. Busschots, A. Voet, D. Maeyer, M. Rain, J. Emiliani et al., Identification of the LEDGF/p75 Binding Site in HIV-1 Integrase, Journal of Molecular Biology, vol.365, issue.5, pp.1480-1492, 2007.
DOI : 10.1016/j.jmb.2006.10.094

S. 47-rahman, R. Lu, N. Vandegraaff, . Cherepanov, and A. Engelman, Structure-based mutagenesis of the integrase-LEDGF/p75 interface uncouples a strict correlation between in vitro protein binding and HIV-1 fitness, Virology, vol.357, issue.1, pp.79-90, 2007.
DOI : 10.1016/j.virol.2006.08.011

C. Mckee, J. Kessl, N. Shkriabai, . Dar, . Mj et al., Dynamic Modulation of HIV-1 Integrase Structure and Function by Cellular Lens Epithelium-derived Growth Factor (LEDGF) Protein, Journal of Biological Chemistry, vol.283, issue.46, pp.31802-31812, 2008.
DOI : 10.1074/jbc.M805843200

X. Li, . Koh, and A. Engelman, Correlation of Recombinant Integrase Activity and Functional Preintegration Complex Formation during Acute Infection by Replication-Defective Integrase Mutant Human Immunodeficiency Virus, Journal of Virology, vol.86, issue.7, pp.3861-3879, 2012.
DOI : 10.1128/JVI.06386-11

K. Matreyek and A. Engelman, The Requirement for Nucleoporin NUP153 during Human Immunodeficiency Virus Type 1 Infection Is Determined by the Viral Capsid, Journal of Virology, vol.85, issue.15, pp.7818-7827, 2011.
DOI : 10.1128/JVI.00325-11