J. M. Vaquerizas, Nuclear Pore Proteins Nup153 and Megator Define Transcriptionally Active Regions in the Drosophila Genome, PLoS Genetics, vol.13, issue.2, p.1000846, 2010.
DOI : 10.1371/journal.pgen.1000846.s020

B. Kalverda, H. Pickersgill, V. V. Shloma, and M. Fornerod, Nucleoporins Directly Stimulate Expression of Developmental and Cell-Cycle Genes Inside the Nucleoplasm, Cell, vol.140, issue.3, pp.360-371, 2010.
DOI : 10.1016/j.cell.2010.01.011

M. Capelson, Chromatin-Bound Nuclear Pore Components Regulate Gene Expression in Higher Eukaryotes, Cell, vol.140, issue.3, pp.372-383, 2010.
DOI : 10.1016/j.cell.2009.12.054

URL : http://doi.org/10.1016/j.cell.2009.12.054

W. H. Light, A Conserved Role for Human Nup98 in Altering Chromatin Structure and Promoting Epigenetic Transcriptional Memory, PLoS Biology, vol.9, issue.(11), p.1001524, 2013.
DOI : 10.1371/journal.pbio.1001524.s016

S. Mendjan, Nuclear Pore Components Are Involved in the Transcriptional Regulation of Dosage Compensation in Drosophila, Molecular Cell, vol.21, issue.6, pp.811-823, 2006.
DOI : 10.1016/j.molcel.2006.02.007

M. Capelson, C. Doucet, and M. W. Hetzer, Nuclear Pore Complexes: Guardians of the Nuclear Genome, Cold Spring Harbor Symposia on Quantitative Biology, vol.75, issue.0, pp.585-597, 2010.
DOI : 10.1101/sqb.2010.75.059

S. Cohen, S. Au, and N. Pante, How viruses access the nucleus, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1813, issue.9, pp.1634-1645, 2011.
DOI : 10.1016/j.bbamcr.2010.12.009

T. Schaller, HIV-1 Capsid-Cyclophilin Interactions Determine Nuclear Import Pathway, Integration Targeting and Replication Efficiency, PLoS Pathogens, vol.7, issue.12, p.1002439, 2011.
DOI : 10.1371/journal.ppat.1002439.s010

URL : http://doi.org/10.1371/journal.ppat.1002439

K. A. Matreyek, S. S. Yucel, X. Li, and A. Engelman, Nucleoporin NUP153 Phenylalanine-Glycine Motifs Engage a Common Binding Pocket within the HIV-1 Capsid Protein to Mediate Lentiviral Infectivity, PLoS Pathogens, vol.279, issue.10, p.1003693, 2013.
DOI : 10.1371/journal.ppat.1003693.s005

K. A. Matreyek and A. Engelman, The Requirement for Nucleoporin NUP153 during Human Immunodeficiency Virus Type 1 Infection Is Determined by the Viral Capsid, Journal of Virology, vol.85, issue.15, pp.7818-7827, 2011.
DOI : 10.1128/JVI.00325-11

K. Lee, Flexible Use of Nuclear Import Pathways by HIV-1, Cell Host & Microbe, vol.7, issue.3, pp.221-233, 2010.
DOI : 10.1016/j.chom.2010.02.007

R. Konig, Global Analysis of Host-Pathogen Interactions that Regulate Early-Stage HIV-1 Replication, Cell, vol.135, issue.1, pp.49-60, 2008.
DOI : 10.1016/j.cell.2008.07.032

D. Nunzio and F. , Nup153 and Nup98 bind the HIV-1 core and contribute to the early steps of HIV-1 replication, Virology, vol.440, issue.1, pp.8-18, 2013.
DOI : 10.1016/j.virol.2013.02.008

D. Nunzio and F. , Human Nucleoporins Promote HIV-1 Docking at the Nuclear Pore, Nuclear Import and Integration, PLoS ONE, vol.7, issue.9, p.46037, 2012.
DOI : 10.1371/journal.pone.0046037.s003

D. Nunzio and F. , New insights in the role of nucleoporins: A bridge leading to concerted steps from HIV-1 nuclear entry until integration, Virus Research, vol.178, issue.2, pp.187-196, 2013.
DOI : 10.1016/j.virusres.2013.09.003

Y. Suzuki and R. Craigie, The road to chromatin ??? nuclear entry of retroviruses, Nature Reviews Microbiology, vol.5, issue.3, pp.187-196, 2007.
DOI : 10.1038/nrmicro1579

P. Cherepanov, E. Devroe, P. A. Silver, and A. Engelman, Identification of an Evolutionarily Conserved Domain in Human Lens Epithelium-derived Growth Factor/Transcriptional Co-activator p75 (LEDGF/p75) That Binds HIV-1 Integrase, Journal of Biological Chemistry, vol.279, issue.47, pp.48883-48892, 2004.
DOI : 10.1074/jbc.M406307200

M. C. Shun, LEDGF/p75 functions downstream from preintegration complex formation to effect gene-specific HIV-1 integration, Genes & Development, vol.21, issue.14, pp.1767-1778, 2007.
DOI : 10.1101/gad.1565107

M. Llano, An Essential Role for LEDGF/p75 in HIV Integration, Science, vol.314, issue.5798, pp.461-464, 2006.
DOI : 10.1126/science.1132319

A. L. Brass, Identification of Host Proteins Required for HIV Infection Through a Functional Genomic Screen, Science, vol.317, issue.5840, pp.921-926, 2008.
DOI : 10.1126/science.1143767

A. J. Price, Host Cofactors and Pharmacologic Ligands Share an Essential Interface in HIV-1 Capsid That Is Lost upon Disassembly, PLoS Pathogens, vol.51, issue.455, p.1004459, 2014.
DOI : 10.1371/journal.ppat.1004459.s006

A. Bhattacharya, Structural basis of HIV-1 capsid recognition by PF74 and CPSF6, Proc. Natl Acad. Sci. USA 111, pp.18625-18630, 2014.
DOI : 10.1371/journal.ppat.1004459

J. R. Ball and K. S. Ullman, Versatility at the nuclear pore complex: lessons learned from the nucleoporin Nup153, Chromosoma, vol.73, issue.11, pp.319-330, 2005.
DOI : 10.1007/s00412-005-0019-3

G. Rabut, V. Doye, and J. Ellenberg, Mapping the dynamic organization of the nuclear pore complex inside single living cells, Nature Cell Biology, vol.112, issue.11, pp.1114-1121, 2004.
DOI : 10.1111/j.0022-2720.2004.01404.x

M. E. Hase and V. C. Cordes, Direct Interaction with Nup153 Mediates Binding of Tpr to the Periphery of the Nuclear Pore Complex, Molecular Biology of the Cell, vol.14, issue.5, pp.1923-1940, 2003.
DOI : 10.1091/mbc.E02-09-0620

R. Y. Lim, J. Koser, N. P. Huang, K. Schwarz-herion, and U. Aebi, Nanomechanical interactions of phenylalanine?glycine nucleoporins studied by single molecule force?volume spectroscopy, Journal of Structural Biology, vol.159, issue.2, pp.277-289, 2007.
DOI : 10.1016/j.jsb.2007.01.018

G. Zimowska and M. R. Paddy, Structures and Dynamics of Drosophila Tpr Inconsistent with a Static, Filamentous Structure, Experimental Cell Research, vol.276, issue.2, pp.223-232, 2002.
DOI : 10.1006/excr.2002.5525

K. Ikegami and J. D. Lieb, Nucleoporins and Transcription: New Connections, New Questions, PLoS Genetics, vol.276, issue.2, p.1000861, 2010.
DOI : 10.1371/journal.pgen.1000861.g001

URL : http://doi.org/10.1371/journal.pgen.1000861

B. M. Fontoura, S. Dales, G. Blobel, and H. Zhong, The nucleoporin Nup98 associates with the intranuclear filamentous protein network of TPR, Proc. Natl Acad. Sci. USA 98, pp.3208-3213, 2001.
DOI : 10.1083/jcb.123.6.1333

S. Krull, Protein Tpr is required for establishing nuclear pore-associated zones of heterochromatin exclusion, The EMBO Journal, vol.110, issue.10, pp.1659-1673, 2010.
DOI : 10.1007/BF00710032

P. Enarson, M. Enarson, R. Bastos, and B. Burke, Amino-terminal sequences that direct nucleoporin Nup153 to the inner surface of the nuclear envelope, Chromosoma, vol.107, issue.4, pp.228-236, 1998.
DOI : 10.1007/s004120050301

P. Charneau, HIV-1 Reverse Transcription A Termination Step at the Center of the Genome, Journal of Molecular Biology, vol.241, issue.5, pp.651-662, 1994.
DOI : 10.1006/jmbi.1994.1542

B. David-watine, Silencing Nuclear Pore Protein Tpr Elicits a Senescent-Like Phenotype in Cancer Cells, PLoS ONE, vol.303, issue.7, p.22423, 2011.
DOI : 10.1371/journal.pone.0022423.s003

S. L. Butler, M. S. Hansen, and F. D. Bushman, A quantitative assay for HIV DNA integration in vivo, Nature Medicine, vol.7, issue.5, pp.631-634, 2001.
DOI : 10.1038/87979

H. Ebina, J. Aoki, S. Hatta, T. Yoshida, and Y. Koyanagi, Role of Nup98 in nuclear entry of human immunodeficiency virus type 1?cDNA, Microbes and Infection, vol.6, issue.8, pp.715-724, 2004.
DOI : 10.1016/j.micinf.2004.04.002

J. C. Valle-casuso, TNPO3 Is Required for HIV-1 Replication after Nuclear Import but prior to Integration and Binds the HIV-1 Core, Journal of Virology, vol.86, issue.10, pp.5931-5936, 2012.
DOI : 10.1128/JVI.00451-12

URL : https://hal.archives-ouvertes.fr/hal-00762028

B. K. Ganser-pornillos, U. K. Von-schwedler, K. M. Stray, C. Aiken, and W. Sundquist, Assembly Properties of the Human Immunodeficiency Virus Type 1 CA Protein, Journal of Virology, vol.78, issue.5, pp.2545-2552, 2004.
DOI : 10.1128/JVI.78.5.2545-2552.2004

K. Rajanala and V. K. Nandicoori, Localization of Nucleoporin Tpr to the Nuclear Pore Complex Is Essential for Tpr Mediated Regulation of the Export of Unspliced RNA, PLoS ONE, vol.25, issue.1, p.29921, 2012.
DOI : 10.1371/journal.pone.0029921.s009

G. P. Wang, Analysis of Lentiviral Vector Integration in HIV+ Study Subjects Receiving Autologous Infusions of Gene Modified CD4+ T Cells, Molecular Therapy, vol.17, issue.5, pp.844-850, 2009.
DOI : 10.1038/mt.2009.16

M. Bates, B. Huang, G. T. Dempsey, and X. Zhuang, Multicolor Super-Resolution Imaging with Photo-Switchable Fluorescent Probes, Science, vol.16, issue.1, pp.1749-1753, 2007.
DOI : 10.1016/j.copbio.2004.12.003

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2633025

R. P. Nieuwenhuizen, Measuring image resolution in optical nanoscopy, Nature Methods, vol.216, issue.6, pp.557-562, 2013.
DOI : 10.1038/nmeth.2448

S. M. Paulillo, Nucleoporin Domain Topology is Linked to the Transport Status of the Nuclear Pore Complex, Journal of Molecular Biology, vol.351, issue.4, pp.784-798, 2005.
DOI : 10.1016/j.jmb.2005.06.034

D. Primio and C. , Single-Cell Imaging of HIV-1 Provirus (SCIP), Proc. Natl Acad. Sci. USA, pp.5636-5641, 2013.
DOI : 10.1177/1087057110392993

A. Ciuffi, A role for LEDGF/p75 in targeting HIV DNA integration, Nature Medicine, vol.17, issue.12, pp.1287-1289, 2005.
DOI : 10.1038/nm1329

M. M. Pradeepa, H. G. Sutherland, J. Ule, G. R. Grimes, and W. Bickmore, Psip1/Ledgf p52 Binds Methylated Histone H3K36 and Splicing Factors and Contributes to the Regulation of Alternative Splicing, PLoS Genetics, vol.122, issue.5, p.1002717, 2012.
DOI : 10.1371/journal.pgen.1002717.s004

E. R. Griffis, S. Xu, and M. A. Powers, Nup98 Localizes to Both Nuclear and Cytoplasmic Sides of the Nuclear Pore and Binds to Two Distinct Nucleoporin Subcomplexes, Molecular Biology of the Cell, vol.14, issue.2, pp.600-610, 2003.
DOI : 10.1091/mbc.E02-09-0582

P. Frosst, T. Guan, C. Subauste, K. Hahn, and L. Gerace, Tpr is localized within the nuclear basket of the pore complex and has a role in nuclear protein export, The Journal of Cell Biology, vol.110, issue.4, pp.617-630, 2002.
DOI : 10.1083/jcb.144.5.839

M. Llano, S. Delgado, M. Vanegas, and E. M. Poeschla, Lens Epithelium-derived Growth Factor/p75 Prevents Proteasomal Degradation of HIV-1 Integrase, Journal of Biological Chemistry, vol.279, issue.53, pp.55570-55577, 2004.
DOI : 10.1074/jbc.M408508200

|. Doi, 10.1038/ncomms7483 ARTICLE, NATURE COMMUNICATIONS NATURE COMMUNICATIONS |, vol.66483
URL : https://hal.archives-ouvertes.fr/in2p3-00652853

M. Llano, LEDGF/p75 Determines Cellular Trafficking of Diverse Lentiviral but Not Murine Oncoretroviral Integrase Proteins and Is a Component of Functional Lentiviral Preintegration Complexes, Journal of Virology, vol.78, issue.17, pp.9524-9537, 2004.
DOI : 10.1128/JVI.78.17.9524-9537.2004

S. Emiliani, Integrase Mutants Defective for Interaction with LEDGF/p75 Are Impaired in Chromosome Tethering and HIV-1 Replication, Journal of Biological Chemistry, vol.280, issue.27, pp.25517-25523, 2005.
DOI : 10.1074/jbc.M501378200

P. Cherepanov, Solution structure of the HIV-1 integrase-binding domain in LEDGF/p75, Nature Structural & Molecular Biology, vol.2, issue.6, pp.526-532, 2005.
DOI : 10.1016/0263-7855(96)00009-4

S. H. Lee, H. Sterling, A. Burlingame, and F. Mccormick, Tpr directly binds to Mad1 and Mad2 and is important for the Mad1-Mad2-mediated mitotic spindle checkpoint, Genes & Development, vol.22, issue.21, pp.2926-2931, 2008.
DOI : 10.1101/gad.1677208

M. Niepel, The nuclear basket proteins Mlp1p and Mlp2p are part of a dynamic interactome including Esc1p and the proteasome, Molecular Biology of the Cell, vol.24, issue.24, pp.3920-3938, 2013.
DOI : 10.1091/mbc.E13-07-0412

M. K. Lewinski, Genome-Wide Analysis of Chromosomal Features Repressing Human Immunodeficiency Virus Transcription, Journal of Virology, vol.79, issue.11, pp.6610-6619, 2005.
DOI : 10.1128/JVI.79.11.6610-6619.2005

Y. Koh, Differential Effects of Human Immunodeficiency Virus Type 1 Capsid and Cellular Factors Nucleoporin 153 and LEDGF/p75 on the Efficiency and Specificity of Viral DNA Integration, Journal of Virology, vol.87, issue.1, pp.648-658, 2013.
DOI : 10.1128/JVI.01148-12

M. C. Shun, Identification and Characterization of PWWP Domain Residues Critical for LEDGF/p75 Chromatin Binding and Human Immunodeficiency Virus Type 1 Infectivity, Journal of Virology, vol.82, issue.23, pp.11555-11567, 2008.
DOI : 10.1128/JVI.01561-08

A. Brussel and P. Sonigo, Analysis of Early Human Immunodeficiency Virus Type 1 DNA Synthesis by Use of a New Sensitive Assay for Quantifying Integrated Provirus, Journal of Virology, vol.77, issue.18, pp.10119-10124, 2003.
DOI : 10.1128/JVI.77.18.10119-10124.2003

M. Stremlau, The cytoplasmic body component TRIM5? restricts HIV-1 infection in Old World monkeys, Nature, vol.427, issue.6977, pp.848-853, 2004.
DOI : 10.1038/nature02343

C. Cattoglio, High-definition mapping of retroviral integration sites identifies active regulatory elements in human multipotent hematopoietic progenitors, Blood, vol.116, issue.25, pp.5507-5517, 2010.
DOI : 10.1182/blood-2010-05-283523

A. Barski, Chromatin poises miRNA- and protein-coding genes for expression, Genome Research, vol.19, issue.10, pp.1742-1751, 2009.
DOI : 10.1101/gr.090951.109

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2765269

H. Soares, Regulated vesicle fusion generates signaling nanoterritories that control T cell activation at the immunological synapse, The Journal of Experimental Medicine, vol.210, issue.11, pp.2415-2433, 2013.
DOI : 10.1038/ni.2049

URL : https://hal.archives-ouvertes.fr/pasteur-01371057

R. Henriques, QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ, Nature Methods, vol.47, issue.5, pp.339-340, 2010.
DOI : 10.1038/nmeth0510-339

M. Lelek, Superresolution imaging of HIV in infected cells with FlAsH-PALM, Proc. Natl Acad. Sci. USA, pp.8564-8569, 2012.
DOI : 10.1038/nmeth.1176

G. T. Dempsey, J. C. Vaughan, K. H. Chen, M. Bates, and X. Zhuang, Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging, Nature Methods, vol.91, issue.12, pp.1027-1036, 2011.
DOI : 10.1038/nmeth0510-338

A. Serge, N. Bertaux, H. Rigneault, and D. Marguet, Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes, Nature Methods, vol.84, issue.8, pp.687-694, 2008.
DOI : 10.1038/nmeth.1176

URL : https://hal.archives-ouvertes.fr/hal-00295014