M. Saitou and M. Yamaji, Primordial Germ Cells in Mice, Cold Spring Harbor Perspectives in Biology, vol.4, issue.11, p.8375, 2012.
DOI : 10.1101/cshperspect.a008375

Y. Clermont and B. Perey, Quantitative study of the cell population of the seminiferous tubules in immature rats, American Journal of Anatomy, vol.20, issue.2, pp.241-67, 1957.
DOI : 10.1002/aja.1001000205

V. Rouiller-fabre, C. Levacher, C. Pairault, C. Racine, E. Moreau et al., Development of the foetal and neonatal testis, Andrologia, vol.58, issue.1, pp.79-83, 2003.
DOI : 10.1210/er.15.5.574

L. Ly, D. Chan, and J. Trasler, Developmental windows of susceptibility for epigenetic inheritance through the male germline, Seminars in Cell & Developmental Biology, vol.43, pp.96-105, 2015.
DOI : 10.1016/j.semcdb.2015.07.006

I. Cantone and A. Fisher, Epigenetic programming and reprogramming during development, Nature Structural & Molecular Biology, vol.10, issue.3, pp.282-291, 2013.
DOI : 10.1016/j.cell.2006.07.024

P. Hajkova, K. Ancelin, T. Waldmann, N. Lacoste, U. Lange et al., Chromatin dynamics during epigenetic reprogramming in the mouse germ line, Nature, vol.171, issue.7189, pp.877-81, 2008.
DOI : 10.1038/nature06714

C. Rose, S. Van-den-driesche, R. Sharpe, R. Meehan, and A. Drake, Dynamic changes in DNA modification states during late gestation male germ line development in the rat, Epigenetics & Chromatin, vol.7, issue.1, p.19, 2014.
DOI : 10.1101/gr.106138.110

J. Trasler, Epigenetics in spermatogenesis, Molecular and Cellular Endocrinology, vol.306, issue.1-2, pp.33-39, 2009.
DOI : 10.1016/j.mce.2008.12.018

M. Abe, S. Tsai, J. S. Pfeifer, G. Szabó, and P. , Sex-Specific Dynamics of Global Chromatin Changes in Fetal Mouse Germ Cells, PLoS ONE, vol.31, issue.8, p.23848, 2011.
DOI : 10.1371/journal.pone.0023848.s001

J. Barau, A. Teissandier, N. Zamudio, S. Roy, V. Nalesso et al., The DNA methyltransferase DNMT3C protects male germ cells from transposon activity, Science, vol.354, issue.6314, pp.909-921, 2016.
DOI : 10.1093/molbev/msw054

K. Siklenka, S. Erkek, M. Godmann, R. Lambrot, S. Mcgraw et al., Disruption of histone methylation in developing sperm impairs offspring health transgenerationally, Science, vol.12, issue.4, pp.2006-2020, 2015.
DOI : 10.1016/j.devcel.2007.03.001

. Rwigemera, Fetal testis organ culture reproduces the dynamics of epigenetic reprogramming in rat gonocytes, Epigenetics & Chromatin, vol.28, issue.1, p.19, 2017.
DOI : 10.1016/j.tig.2011.09.004

URL : https://hal.archives-ouvertes.fr/pasteur-01533969

E. Radford, M. Ito, H. Shi, J. Corish, K. Yamazawa et al., In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism, utero effects, p.1255903, 2014.
DOI : 10.1038/nature08924

K. Frick, Z. Zhao, and L. Fan, The epigenetics of estrogen, Epigenetics, vol.20, issue.6, pp.675-80, 2011.
DOI : 10.1001/jama.288.3.321

D. Mattison, N. Karyakina, M. Goodman, and J. Lakind, Pharmaco- and toxicokinetics of selected exogenous and endogenous estrogens: A review of the data and identification of knowledge gaps, Critical Reviews in Toxicology, vol.77, issue.8, pp.696-724, 2014.
DOI : 10.1210/en.2005-0565

H. Wu, R. Hauser, S. Krawetz, and J. Pilsner, Environmental Susceptibility of the Sperm Epigenome During Windows of Male Germ Cell Development, Current Environmental Health Reports, vol.31, issue.6, pp.356-66, 2015.
DOI : 10.1007/s10815-014-0243-y

K. Iqbal, D. Tran, A. Li, C. Warden, A. Bai et al., Deleterious effects of endocrine disruptors are corrected in the mammalian germline by epigenome reprogramming, Genome Biology, vol.30, issue.1, p.59, 2015.
DOI : 10.1128/MCB.01537-09

J. Toppari, Environmental Endocrine Disrupters and Disorders of Sexual Differentiation, Seminars in Reproductive Medicine, vol.20, issue.3, pp.305-317, 2002.
DOI : 10.1055/s-2002-35377

R. Sharpe and D. Irvine, How strong is the evidence of a link between environmental chemicals and adverse effects on human reproductive health?, BMJ, vol.328, issue.7437, pp.447-51, 2004.
DOI : 10.1136/bmj.328.7437.447

N. Skakkebaek, R. Meyts, E. , B. Louis, G. Toppari et al., Male Reproductive Disorders and Fertility Trends: Influences of Environment and Genetic Susceptibility, Physiological Reviews, vol.96, issue.1, pp.55-97, 2016.
DOI : 10.1152/physrev.00017.2015

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4698396

G. Delbès, C. Duquenne, J. Szenker, J. Taccoen, R. Habert et al., Developmental Changes in Testicular Sensitivity to Estrogens throughout Fetal and Neonatal Life, Toxicological Sciences, vol.99, issue.1, pp.234-277, 2007.
DOI : 10.1093/toxsci/kfm160

N. Skakkebaek, R. Meyts, E. Main, and K. , Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects: Opinion, Human Reproduction, vol.16, issue.5, pp.972-980, 2001.
DOI : 10.1093/humrep/16.5.972

L. Storgaard, J. Bonde, and J. Olsen, Male reproductive disorders in humans and prenatal indicators of estrogen exposure, Reproductive Toxicology, vol.21, issue.1, pp.4-15, 2006.
DOI : 10.1016/j.reprotox.2005.05.006

Y. Yasuda, T. Kihara, T. Tanimura, and H. Nishimura, Gonadal dysgenesis induced by prenatal exposure to ethinyl estradiol in mice, Teratology, vol.23, issue.2, pp.219-246, 1985.
DOI : 10.1016/0002-9378(77)90114-4

G. Livera, G. Delbes, C. Pairault, V. Rouiller-fabre, and R. Habert, Organotypic culture, a powerful model for studying rat and mouse fetal testis development, Cell and Tissue Research, vol.234, issue.3, pp.507-528, 2006.
DOI : 10.1002/(SICI)1097-0185(20000201)258:2<210::AID-AR10>3.0.CO;2-X

G. Lassonde, D. Nasuhoglu, J. Pan, B. Gaye, V. Yargeau et al., Ozone treatment prevents the toxicity of an environmental mixture of estrogens on rat fetal testicular development, Reproductive Toxicology, vol.58, pp.85-92, 2015.
DOI : 10.1016/j.reprotox.2015.09.001

URL : https://hal.archives-ouvertes.fr/pasteur-01351377

R. Habert, V. Muczynski, T. Grisin, D. Moison, S. Messiaen et al., Concerns about the widespread use of rodent models for human risk assessments of endocrine disruptors, Reproduction, vol.147, issue.4, pp.119-148, 2014.
DOI : 10.1530/REP-13-0497

URL : https://hal.archives-ouvertes.fr/pasteur-01135729

J. Cronkhite, C. Norlander, J. Furth, G. Levan, D. Garbers et al., Male and female germline specific expression of an EGFP reporter gene in a unique strain of transgenic rats, Developmental Biology, vol.284, issue.1, pp.171-83, 2005.
DOI : 10.1016/j.ydbio.2005.05.015

S. Ohsako, D. Bunick, and Y. Hayashi, Immunocytochemical observation of the 90 KD heat shock protein (HSP90): high expression in primordial and pre-meiotic germ cells of male and female rat gonads., Journal of Histochemistry & Cytochemistry, vol.43, issue.1, pp.67-76, 1995.
DOI : 10.1177/43.1.7822767

V. Nair, Y. Ge, N. Balasubramaniyan, J. Kim, Y. Okawa et al., Involvement of Histone Demethylase LSD1 in Short-Time-Scale Gene Expression Changes during Cell Cycle Progression in Embryonic Stem Cells, Molecular and Cellular Biology, vol.32, issue.23, pp.4861-76, 2012.
DOI : 10.1128/MCB.00816-12

N. Song, J. Liu, S. An, T. Nishino, Y. Hishikawa et al., Immunohistochemical Analysis of Histone H3 Modifications in Germ Cells during Mouse Spermatogenesis, ACTA HISTOCHEMICA ET CYTOCHEMICA, vol.44, issue.4, pp.183-90, 2011.
DOI : 10.1267/ahc.11027

G. Costa, V. Barra, L. Lentini, D. Cilluffo, D. Leonardo et al., DNA demethylation caused by 5-Aza-2?-deoxycytidine induces mitotic alterations and aneuploidy, Oncotarget, vol.7, pp.3726-3765, 2016.

S. Heras, K. Forier, K. Rombouts, K. Braeckmans, V. Soom et al., DNA counterstaining for methylation and hydroxymethylation immunostaining in bovine zygotes, Analytical Biochemistry, vol.454, pp.14-20, 2014.
DOI : 10.1016/j.ab.2014.03.002

M. Stadnick, F. Pieracci, M. Cranston, E. Taksel, J. Thorvaldsen et al., Role of a 461-bp G-rich repetitive element in H19 transgene imprinting, Development Genes and Evolution, vol.209, issue.4, pp.239-287, 1999.
DOI : 10.1007/s004270050248

R. Shemer, Y. Birger, A. Riggs, and A. Razin, Structure of the imprinted mouse Snrpn gene and establishment of its parental-specific methylation pattern, Proceedings of the National Academy of Sciences, vol.9, issue.15, pp.10267-72, 1997.
DOI : 10.1101/gad.9.15.1857

L. Li and R. Dahiya, MethPrimer: designing primers for methylation PCRs, Bioinformatics, vol.18, issue.11, pp.1427-1458, 2002.
DOI : 10.1093/bioinformatics/18.11.1427

A. Novi and P. Saba, An electron microscopic study of the development of rat testis in the first 10 postnatal days, Zeitschrift f?r Zellforschung und Mikroskopische Anatomie, vol.70, issue.3, pp.313-339, 1968.
DOI : 10.1007/BF00332472

Z. Chen and A. Riggs, DNA Methylation and Demethylation in Mammals, Journal of Biological Chemistry, vol.4, issue.21, pp.18347-53, 2011.
DOI : 10.1038/nrm2950

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3099650

E. Li, Chromatin modification and epigenetic reprogramming in mammalian development, Nature Reviews Genetics, vol.21, issue.9, pp.662-73, 2002.
DOI : 10.1038/nrg962

J. Orth, Proliferation of sertoli cells in fetal and postnatal rats: A quantitative autoradiographic study, The Anatomical Record, vol.106, issue.4, pp.485-92, 1982.
DOI : 10.3109/10520296109113298

L. Nel-themaat, C. Jang, M. Stewart, H. Akiyama, R. Viger et al., Sertoli Cell Behaviors in Developing Testis Cords and Postnatal Seminiferous Tubules of the Mouse, Biology of Reproduction, vol.84, issue.2, pp.342-50, 2011.
DOI : 10.1095/biolreprod.110.086900

B. Boulogne, R. Habert, and C. Levacher, Regulation of the proliferation of cocultured gonocytes and sertoli cells by retinoids, triiodothyronine, and intracellular signaling factors: Differences between fetal and neonatal cells, Molecular Reproduction and Development, vol.133, issue.2, pp.194-203, 2003.
DOI : 10.1042/bj3310767

F. Von-meyenn and W. Reik, Forget the Parents: Epigenetic Reprogramming in Human Germ Cells, Cell, vol.161, issue.6, pp.1248-51, 2015.
DOI : 10.1016/j.cell.2015.05.039

M. Culty and . Gonocytes, Gonocytes, the forgotten cells of the germ cell lineage, Birth Defects Research Part C: Embryo Today: Reviews, vol.79, issue.Part 3, pp.1-26, 2009.
DOI : 10.1128/MCB.9.10.4563

N. Rose and R. Klose, Understanding the relationship between DNA methylation and histone lysine methylation, Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, vol.1839, issue.12, pp.1362-72, 2014.
DOI : 10.1016/j.bbagrm.2014.02.007

URL : http://doi.org/10.1016/j.bbagrm.2014.02.007

J. Miller and P. Grant, The role of DNA methylation and histone modifications in transcriptional regulation in humans Epigenetics: development and disease, pp.978-94

H. Cedar and Y. Bergman, Linking DNA methylation and histone modification: patterns and paradigms, Nature Reviews Genetics, vol.323, issue.5, pp.295-304, 2009.
DOI : 10.1080/07391102.2005.10531230

K. Stewart, L. Veselovska, J. Kim, J. Huang, H. Saadeh et al., Dynamic changes in histone modifications precede de novo DNA methylation in oocytes, Genes & Development, vol.29, issue.23, pp.2449-62, 2015.
DOI : 10.1101/gad.271353.115

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4691949

M. Morselli, W. Pastor, B. Montanini, K. Nee, R. Ferrari et al., In vivo targeting of de novo DNA methylation by histone modifications in yeast and mouse. eLife, p.6205, 2015.

C. Okitsu and C. Hsieh, DNA Methylation Dictates Histone H3K4 Methylation, Molecular and Cellular Biology, vol.27, issue.7, pp.2746-57, 2007.
DOI : 10.1128/MCB.02291-06

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1899905

P. Singh, A. Li, D. Tran, N. Oates, E. Kang et al., De Novo DNA Methylation in the Male Germ Line Occurs by Default but Is Excluded at Sites of H3K4 Methylation, Cell Reports, vol.4, issue.1, pp.205-224, 2013.
DOI : 10.1016/j.celrep.2013.06.004

M. Weber, I. Hellmann, M. Stadler, L. Ramos, S. Pääbo et al., Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome, Nature Genetics, vol.23, issue.4, pp.457-66, 2007.
DOI : 10.1128/MCB.19.1.164

S. Smallwood and G. Kelsey, De novo DNA methylation: a germ cell perspective, Trends in Genetics, vol.28, issue.1, pp.33-42, 2012.
DOI : 10.1016/j.tig.2011.09.004