A. Isaacs and J. Lindenmann, Virus Interference. I. The Interferon, Proceedings of the Royal Society B: Biological Sciences, vol.147, issue.927, pp.258-67, 1957.
DOI : 10.1098/rspb.1957.0048

L. Platanias, Mechanisms of type-I- and type-II-interferon-mediated signalling, Nature Reviews Immunology, vol.132, issue.5, pp.375-86, 2005.
DOI : 10.1001/jama.290.24.3222

N. De-weerd and T. Nguyen, The interferons and their receptors?distribution and regulation, Immunology and Cell Biology, vol.232, issue.5, pp.483-91, 2012.
DOI : 10.1006/viro.1997.8527

G. Trinchieri, Type I interferon: friend or foe?, The Journal of Experimental Medicine, vol.5, issue.10, 2010.
DOI : 10.1002/hep.21970

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2947062

J. Schoenborn and C. Wilson, Regulation of Interferon?? During Innate and Adaptive Immune Responses, Adv Immunol, vol.96, issue.07, pp.41-101, 2007.
DOI : 10.1016/S0065-2776(07)96002-2

A. Egli, D. Santer, O. Shea, D. Tyrrell, D. Houghton et al., The impact of the interferon-lambda family on the innate and adaptive immune response to viral infections, Emerging Microbes & Infections, vol.14, issue.7, 2014.
DOI : 10.1111/j.1365-3083.2006.01773.x

L. Ivashkiv and L. Donlin, Regulation of type I interferon responses, Nature Reviews Immunology, vol.7, issue.1, pp.36-49, 2014.
DOI : 10.1016/j.chom.2010.04.007

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4084561

T. Mogensen, Pathogen Recognition and Inflammatory Signaling in Innate Immune Defenses, Clinical Microbiology Reviews, vol.22, issue.2, pp.240-73, 2009.
DOI : 10.1128/CMR.00046-08

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2668232

M. Montoya, G. Schiavoni, F. Mattei, I. Gresser, F. Belardelli et al., Type I interferons produced by dendritic cells promote their phenotypic and functional activation, Blood, vol.99, issue.9, pp.3263-71, 2002.
DOI : 10.1182/blood.V99.9.3263

T. Ito, R. Amakawa, M. Inaba, S. Ikehara, K. Inaba et al., Differential Regulation of Human Blood Dendritic Cell Subsets by IFNs, The Journal of Immunology, vol.166, issue.5, pp.2961-2970, 2001.
DOI : 10.4049/jimmunol.166.5.2961

L. Bon, A. Etchart, N. Rossmann, C. Ashton, M. Hou et al., Cross-priming of CD8+ T cells stimulated by virus-induced type I interferon, Nature Immunology, vol.4, issue.10, pp.1009-1510, 1038.
DOI : 10.1038/ni978

P. Marrack, J. Kappler, and T. Mitchell, Type I Interferons Keep Activated T Cells Alive, The Journal of Experimental Medicine, vol.29, issue.3, 1999.
DOI : 10.1097/00002281-199707000-00011

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2192920/pdf

P. Aichele, H. Unsoeld, M. Koschella, O. Schweier, U. Kalinke et al., Cutting Edge: CD8 T Cells Specific for Lymphocytic Choriomeningitis Virus Require Type I IFN Receptor for Clonal Expansion, The Journal of Immunology, vol.176, issue.8, pp.4525-4534, 2006.
DOI : 10.4049/jimmunol.176.8.4525

G. Kolumam, S. Thomas, L. Thompson, J. Sprent, and K. Murali-krishna, Type I interferons act directly on CD8 T cells to allow clonal expansion and memory formation in response to viral infection, The Journal of Experimental Medicine, vol.4, issue.5, pp.637-50, 2005.
DOI : 10.1038/37648

J. Lund, L. Alexopoulou, A. Sato, M. Karow, N. Adams et al., Recognition of single-stranded RNA viruses by Toll-like receptor 7, Proceedings of the National Academy of Sciences, vol.48, issue.3, pp.5598-603, 2004.
DOI : 10.1002/cyto.10118

K. Fink, K. Lang, N. Manjarrez-orduno, T. Junt, B. Senn et al., Early type?I interferon-mediated signals on B cells specifically enhance antiviral humoral responses, European Journal of Immunology, vol.183, issue.8, pp.2094-105, 2006.
DOI : 10.4049/jimmunol.174.12.7912

C. Ng, B. Sullivan, J. Teijaro, A. Lee, M. Welch et al., Blockade of Interferon Beta, but Not Interferon Alpha, Signaling Controls Persistent Viral Infection, Cell Host & Microbe, vol.17, issue.5, pp.653-61, 2015.
DOI : 10.1016/j.chom.2015.04.005

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4432251

J. Teijaro, C. Ng, A. Lee, B. Sullivan, K. Sheehan et al., Persistent LCMV Infection Is Controlled by Blockade of Type I Interferon Signaling, Science, vol.69, issue.2, pp.207-218, 2013.
DOI : 10.1146/annurev.pathol.1.110304.100230

E. Wilson, D. Yamada, H. Elsaesser, J. Herskovitz, J. Deng et al., Blockade of Chronic Type I Interferon Signaling to Control Persistent LCMV Infection, Science, vol.22, issue.2, pp.202-209, 2013.
DOI : 10.1016/j.immuni.2005.01.005

M. Rayamajhi, J. Humann, K. Penheiter, K. Andreasen, and L. Lenz, to suppress macrophage activation by IFN-?, The Journal of Experimental Medicine, vol.260, issue.2, pp.327-364, 2010.
DOI : 10.1016/j.micinf.2007.05.008

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2822610

S. Kearney, C. Delgado, E. Eshleman, K. Hill, O. Connor et al., Type I IFNs Downregulate Myeloid Cell IFN-? Receptor by Inducing Recruitment of an Early Growth Response 3/NGFI-A Binding Protein 1 Complex That Silences ifngr1 Transcription, The Journal of Immunology, vol.191, issue.6, pp.3384-92, 2013.
DOI : 10.4049/jimmunol.1203510

E. Moseman, T. Wu, J. De-la-torre, P. Schwartzberg, and D. Mcgavern, Type I interferon suppresses virus-specific B cell responses by modulating CD8+ T cell differentiation, Sci Immunol, vol.1, issue.4, 2016.

B. Fallet, K. Narr, Y. Ertuna, R. M. Sommerstein, R. Cornille et al., Interferon-driven deletion of antiviral B cells at the onset of chronic infection, Sci Immunol, vol.1, issue.4, 2016.

F. Mcnab, J. Ewbank, A. Howes, L. Moreira-teixeira, A. Martirosyan et al., ?Infected Macrophages, The Journal of Immunology, vol.193, issue.7, pp.3600-3612, 2014.
DOI : 10.4049/jimmunol.1401088

K. Mayer-barber, B. Andrade, D. Barber, S. Hieny, C. Feng et al., Innate and Adaptive Interferons Suppress IL-1? and IL-1? Production by Distinct Pulmonary Myeloid Subsets during Mycobacterium tuberculosis Infection, Immunity, vol.35, issue.6, pp.1023-1057, 2011.
DOI : 10.1016/j.immuni.2011.12.002

URL : http://doi.org/10.1016/j.immuni.2011.12.002

F. Mcnab, K. Mayer-barber, A. Sher, A. Wack, O. Garra et al., Type I interferons in infectious disease, Nature Reviews Immunology, vol.119, issue.2, pp.87-103, 2015.
DOI : 10.1016/j.immuni.2012.01.011

E. Emamian, J. Leon, C. Lessard, M. Grandits, E. Baechler et al., Peripheral blood gene expression profiling in Sj?gren's syndrome, Genes and Immunity, vol.14, issue.4, pp.285-9620, 2009.
DOI : 10.1073/pnas.252784499

K. Ko, B. Franek, M. Marion, K. Kaufman, C. Langefeld et al., Genetic Ancestry, Serum Interferon-?? Activity, and Autoantibodies in Systemic Lupus Erythematosus, The Journal of Rheumatology, vol.39, issue.6, pp.1238-1278, 2012.
DOI : 10.3899/jrheum.111467

A. Javed and A. Reder, Therapeutic role of beta-interferons in multiple sclerosis, Pharmacology & Therapeutics, vol.110, issue.1, pp.35-56, 2006.
DOI : 10.1016/j.pharmthera.2005.08.011

S. Chakravarty, I. Cockburn, S. Kuk, M. Overstreet, J. Sacci et al., CD8+ T lymphocytes protective against malaria liver stages are primed in skin-draining lymph nodes, Nature Medicine, vol.31, issue.9, pp.1035-4110, 1038.
DOI : 10.4049/jimmunol.167.2.741

M. Obeid, J. Franetich, A. Lorthiois, A. Gego, A. Grüner et al., Skin-draining lymph node priming is sufficient to induce sterile immunity against pre-erythrocytic malaria, EMBO Molecular Medicine, vol.22, issue.2, pp.250-63, 2013.
DOI : 10.1016/j.immuni.2005.03.005

URL : https://hal.archives-ouvertes.fr/hal-01549099

S. Silva-barrios, Protozoan Parasites and Type I IFNs Frontiers in Immunology | www.frontiersin, p.14, 2017.
DOI : 10.3389/fimmu.2017.00014

URL : http://doi.org/10.3389/fimmu.2017.00014

L. Schofield and G. Grau, Immunological processes in malaria pathogenesis, Nature Reviews Immunology, vol.87, issue.9, pp.722-757, 2005.
DOI : 10.1128/CMR.14.4.810-820.2001

M. Stevenson and E. Riley, Innate immunity to malaria, Nature Reviews Immunology, vol.161, issue.3, pp.169-80, 2004.
DOI : 10.4049/jimmunol.171.10.5430

P. Bertolino and D. Bowen, Malaria and the liver: immunological hideand-seek or subversion of immunity from within? Front Microbiol, 2015.

E. Riley and V. Stewart, Immune mechanisms in malaria: new insights in vaccine development, Nature Medicine, vol.45, issue.2, pp.168-78, 2013.
DOI : 10.1111/j.1365-3024.2009.01143.x

B. Urban, R. Ing, and M. Stevenson, Early Interactions Between Blood-Stage Plasmodium Parasites and the Immune System, Curr Top Microbiol Immunol, vol.297, pp.25-70, 2005.
DOI : 10.1007/3-540-29967-X_2

R. Jahiel, J. Vilcek, and R. Nussenzweig, Exogenous Interferon protects Mice against Plasmodium berghei Malaria, Nature, vol.161, issue.5265, pp.1350-1351, 1970.
DOI : 10.1111/j.1699-0463.1967.tb03755.x

C. Morrell, K. Srivastava, A. Swaim, M. Lee, J. Chen et al., Beta Interferon Suppresses the Development of Experimental Cerebral Malaria, Infection and Immunity, vol.79, issue.4, pp.1750-1758, 2011.
DOI : 10.1128/IAI.00810-10

A. Vigario, E. Belnoue, A. Grüner, M. Mauduit, M. Kayibanda et al., Recombinant Human IFN-?? Inhibits Cerebral Malaria and Reduces Parasite Burden in Mice, The Journal of Immunology, vol.178, issue.10, pp.6416-6441, 2007.
DOI : 10.4049/jimmunol.178.10.6416

S. Portugal, C. Carret, M. Recker, A. Armitage, L. Gonçalves et al., Host-mediated regulation of superinfection in malaria, Nature Medicine, vol.75, issue.6, pp.732-739, 2011.
DOI : 10.1016/j.ijpara.2006.06.009

P. Liehl, V. Zuzarte-luís, J. Chan, T. Zillinger, F. Baptista et al., Host-cell sensors for Plasmodium activate innate immunity against liver-stage infection, Nature Medicine, vol.12, issue.1, pp.47-53, 2014.
DOI : 10.1007/BF00932618

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4096771

J. Miller, B. Sack, M. Baldwin, A. Vaughan, and S. Kappe, Interferon-Mediated Innate Immune Responses against Malaria Parasite Liver Stages, Cell Reports, vol.7, issue.2, pp.436-483, 2014.
DOI : 10.1016/j.celrep.2014.03.018

URL : http://doi.org/10.1016/j.celrep.2014.03.018

B. Rocha, P. Marques, F. Leoratti, C. Junqueira, D. Pereira et al., Type I Interferon Transcriptional Signature in Neutrophils and Low-Density Granulocytes Are Associated with Tissue Damage in Malaria, Cell Reports, vol.13, issue.12, pp.2829-2870, 2015.
DOI : 10.1016/j.celrep.2015.11.055

M. Krupka, K. Seydel, C. Feintuch, K. Yee, R. Kim et al., Mild Plasmodium falciparum Malaria following an Episode of Severe Malaria Is Associated with Induction of the Interferon Pathway in Malawian Children, Infection and Immunity, vol.80, issue.3, pp.1150-1155, 2012.
DOI : 10.1128/IAI.06008-11

C. Aucan, A. Walley, B. Hennig, J. Fitness, A. Frodsham et al., Interferon-alpha receptor-1 (IFNAR1) variants are associated with protection against cerebral malaria in The Gambia, Genes and Immunity, vol.4, issue.4, pp.275-82, 2003.
DOI : 10.1038/sj.gene.6363962

E. Ball, M. Sambo, M. Martins, M. Trovoada, C. Benchimol et al., IFNAR1 Controls Progression to Cerebral Malaria in Children and CD8+ T Cell Brain Pathology in Plasmodium berghei-Infected Mice, The Journal of Immunology, vol.190, issue.10, pp.5118-5145, 2013.
DOI : 10.4049/jimmunol.1300114

A. Haque, S. Best, A. Ammerdorffer, L. Desbarrieres, M. De-oca et al., Type I interferons suppress CD4+ T-cell-dependent parasite control during blood-stage Plasmodium infection, European Journal of Immunology, vol.171, issue.9, pp.2688-98, 2011.
DOI : 10.2353/ajpath.2007.061033

A. Haque, S. Best, M. Montes-de-oca, K. James, A. Ammerdorffer et al., Type I IFN signaling in CD8? DCs impairs Th1-dependent malaria immunity, Journal of Clinical Investigation, vol.124, issue.6, pp.2483-96, 2014.
DOI : 10.1172/JCI70698

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4038565

T. Tamura, K. Kimura, K. Yui, and S. Yoshida, Reduction of conventional dendritic cells during Plasmodium infection is dependent on activation induced cell death by type I and II interferons, Experimental Parasitology, vol.159, pp.127-162, 2015.
DOI : 10.1016/j.exppara.2015.09.010

J. Wu, B. Cai, W. Sun, R. Huang, X. Liu et al., Genome-wide Analysis of Host-Plasmodium yoelii Interactions Reveals Regulators of the Type I Interferon Response, Cell Reports, vol.12, issue.4, pp.661-72, 2015.
DOI : 10.1016/j.celrep.2015.06.058

S. Elmore, J. Jones, P. Conrad, S. Patton, D. Lindsay et al., Toxoplasma gondii: epidemiology, feline clinical aspects, and prevention, Trends in Parasitology, vol.26, issue.4, pp.190-196, 2010.
DOI : 10.1016/j.pt.2010.01.009

M. Darde and . Toxoplasma-gondii, , ?new? genotypes and virulence, Parasite, vol.15, issue.3, pp.366-71, 2008.
DOI : 10.1051/parasite/2008153366

I. Blader, B. Coleman, C. Chen, and M. Gubbels, : 15 Years Later, Annual Review of Microbiology, vol.69, issue.1, pp.463-85, 2015.
DOI : 10.1146/annurev-micro-091014-104100

C. Dupont, D. Christian, and C. Hunter, Immune response and immunopathology during toxoplasmosis, Seminars in Immunopathology, vol.12, issue.6, pp.793-813, 2012.
DOI : 10.4049/jimmunol.180.9.6229

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3498595

T. Scharton-kersten, C. P. Sher, A. Denkers, and E. , Toxoplasma gondii:Evidence for Interleukin-12-Dependent and -Independent Pathways of Interferon-? Production Induced by an Attenuated Parasite Strain, Experimental Parasitology, vol.84, issue.2, pp.102-140096, 1996.
DOI : 10.1006/expr.1996.0096

A. Vossenkämper, D. Struck, C. Alvarado-esquivel, T. Went, K. Takeda et al., , but IL-12 is dominant over IL-18 in parasite control, European Journal of Immunology, vol.259, issue.Suppl 2, pp.3197-207, 2004.
DOI : 10.1016/S0022-1759(01)00505-1

Y. Omata, K. Yagami, H. Sakurai, A. Saito, and N. Suzuki, Interferon induction in Toxoplasma gondii infected mice, Zentralbl Bakteriol Mikrobiol Hyg A, vol.255, pp.2-3392, 1983.

T. Shirahata, A. Mori, H. Ishikawa, and H. Goto, Strain Differences of Interferon-Generating Capacity and Resistance in Toxoplasma-Infected Mice, Microbiology and Immunology, vol.49, issue.12, pp.1307-1323, 1986.
DOI : 10.3181/00379727-164-40908

B. Diez, A. Galdeano, R. Nicolas, and R. Cisterna, Relationship between the production of interferon-?/? and interferon-? during acute toxoplasmosis, Parasitology, vol.21, issue.01, pp.11-16, 1989.
DOI : 10.3181/00379727-154-39622

M. Mahmoud, F. Ui, D. Salman, M. Nishimura, and Y. Nishikawa, growth in murine macrophages and embryonic fibroblasts: role of immunity-related GTPase M1, Cellular Microbiology, vol.36, issue.7, pp.1069-83, 2015.
DOI : 10.1016/j.ijpara.2005.12.003

S. Han, H. Melichar, J. Coombes, S. Chan, A. Koshy et al., Internalization and TLR-dependent type I interferon production by monocytes in response to Toxoplasma gondii, Immunology and Cell Biology, vol.96, issue.10, pp.872-81, 2014.
DOI : 10.1016/j.immuni.2009.06.023

E. Rosowski, Q. Nguyen, A. Camejo, E. Spooner, and J. Saeij, Toxoplasma gondii Inhibits Gamma Interferon (IFN-??)- and IFN-??-Induced Host Cell STAT1 Transcriptional Activity by Increasing the Association of STAT1 with DNA, Infection and Immunity, vol.82, issue.2, pp.706-1901291, 2014.
DOI : 10.1128/IAI.01291-13

J. Remington and T. Merigan, Interferon: Protection of Cells Infected with an Intracellular Protozoan (Toxoplasma gondii), Science, vol.161, issue.3843, pp.804-810, 1968.
DOI : 10.1126/science.161.3843.804

C. Wilson and J. Westall, Activation of neonatal and adult human macrophages by alpha, beta, and gamma interferons, Infect Immun, vol.49, issue.2, pp.351-357, 1985.

M. Orellana, Y. Suzuki, F. Araujo, and J. Remington, Role of beta interferon in resistance to Toxoplasma gondii infection, Infect Immun, vol.59, issue.9, pp.3287-90, 1991.

J. Schmitz, J. Carlin, E. Borden, and G. Byrne, Beta interferon inhibits Toxoplasma gondii growth in human monocyte-derived macrophages, Infect Immun, vol.57, issue.10, pp.3254-3260, 1989.

S. Han, The role of type 1 IFN after oral Toxoplasma gondii infection, J Immunol, p.1486, 2011.

E. Pfefferkorn and P. Guyre, Inhibition of growth of Toxoplasma gondii in cultured fibroblasts by human recombinant gamma interferon, Infect Immun, vol.44, issue.2, pp.211-217, 1984.

A. Engin, F. Dogruman-al, U. Ercin, B. Celebi, C. Babur et al., Oxidative stress and tryptophan degradation pattern of acute Toxoplasma gondii infection in mice, Parasitology Research, vol.20, issue.3, pp.1725-1755, 2012.
DOI : 10.1016/j.niox.2009.02.002

L. Sibley, Interactions between Toxoplasma gondii and its mammalian host cells, Seminars in Cell Biology, vol.4, issue.5, pp.335-379, 1993.
DOI : 10.1006/scel.1993.1040

H. Murray, A. Szuro-sudol, D. Wellner, M. Oca, A. Granger et al., Role of tryptophan degradation in respiratory burst-independent antimicrobial activity of gamma interferon-stimulated human macrophages, Infect Immun, vol.57, issue.3, pp.845-854, 1989.

C. Nagineni, K. Pardhasaradhi, M. Martins, B. Detrick, and J. Hooks, Mechanisms of interferon-induced inhibition of Toxoplasma gondii replication in human retinal pigment epithelial cells, Infect Immun, vol.64, issue.10, pp.4188-96, 1996.

P. Kaye and P. Scott, Leishmaniasis: complexity at the host???pathogen interface, Nature Reviews Microbiology, vol.74, issue.8, pp.604-619, 2011.
DOI : 10.1128/IAI.74.2.1305-1312.2006

C. Engwerda, M. Murphy, S. Cotterell, S. Smelt, and P. Kaye, Neutralization of IL-12 demonstrates the existence of discrete organ-specific phases in the control of Leishmania donovani, 02<669::AID-IMMU669> 3.0.CO, pp.669-801521, 1998.

R. Bankoti and S. Stager, Differential regulation of the immune response in the spleen and liver of mice infected with Leishmania donovani, J Trop Med, p.639304, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01009747

R. Herman and S. Baron, Effects of Interferon Inducers on the Intracellular Growth of the Protozoan Parasite, Leishmania donovani, Nature, vol.95, issue.5241, pp.168-70, 1970.
DOI : 10.3181/00379727-95-23271

J. Mattner, H. Schindler, A. Diefenbach, M. Röllinghoff, I. Gresser et al., Regulation of type 2 nitric oxide synthase by type 1 interferons in macrophages infected with Leishmania major, 8<2257::AID-IMMU2257> 3.0.CO, pp.2257-67, 2000.

A. Diefenbach, H. Schindler, N. Donhauser, E. Lorenz, T. Laskay et al., Type 1 Interferon (IFN??/??) and Type 2 Nitric Oxide Synthase Regulate the Innate Immune Response to a Protozoan Parasite, Immunity, vol.8, issue.1, pp.77-87, 1998.
DOI : 10.1016/S1074-7613(00)80460-4

R. Olekhnovitch, B. Ryffel, A. Müller, and P. Bousso, Collective nitric oxide production provides tissue-wide immunity during Leishmania infection, Journal of Clinical Investigation, vol.124, issue.4, pp.1711-1733, 2014.
DOI : 10.1172/JCI72058DS1

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3973105

J. Mattner, A. Wandersee-steinhäuser, A. Pahl, M. Röllinghoff, G. Majeau et al., Protection against Progressive Leishmaniasis by IFN-?, The Journal of Immunology, vol.172, issue.12, pp.7574-82, 2004.
DOI : 10.4049/jimmunol.172.12.7574

R. Khouri, A. Bafica, S. Mda, P. Noronha, A. Kolb et al., IFN-? Impairs Superoxide-Dependent Parasite Killing in Human Macrophages: Evidence for a Deleterious Role of SOD1 in Cutaneous Leishmaniasis, The Journal of Immunology, vol.182, issue.4, pp.2525-2556, 2009.
DOI : 10.4049/jimmunol.0802860

L. Xin, D. Vargas-inchaustegui, S. Raimer, B. Kelly, J. Hu et al., Type I IFN Receptor Regulates Neutrophil Functions and Innate Immunity to Leishmania Parasites, The Journal of Immunology, vol.184, issue.12, pp.7047-56, 2010.
DOI : 10.4049/jimmunol.0903273

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4159077

S. Silva-barrios, M. Smans, C. Duerr, S. Qureshi, J. Fritz et al., Innate Immune B Cell Activation by Leishmania donovani Exacerbates Disease and Mediates Hypergammaglobulinemia, Cell Reports, vol.15, issue.11, pp.2427-2464, 2016.
DOI : 10.1016/j.celrep.2016.05.028

URL : https://hal.archives-ouvertes.fr/pasteur-01351549

R. Bankoti, K. Gupta, A. Levchenko, and S. Stäger, Marginal Zone B Cells Regulate Antigen-Specific T Cell Responses during Infection, The Journal of Immunology, vol.188, issue.8, pp.3961-71, 2012.
DOI : 10.4049/jimmunol.1102880

URL : https://hal.archives-ouvertes.fr/pasteur-00819065

S. Smelt, S. Cotterell, C. Engwerda, and P. Kaye, B Cell-Deficient Mice Are Highly Resistant to Leishmania donovani Infection, but Develop Neutrophil-Mediated Tissue Pathology, The Journal of Immunology, vol.164, issue.7, pp.3681-3689, 2000.
DOI : 10.4049/jimmunol.164.7.3681

E. Deak, A. Jayakumar, K. Cho, K. Goldsmith-pestana, B. Dondji et al., Murine visceral leishmaniasis: IgM and polyclonal B-cell activation lead to disease exacerbation, European Journal of Immunology, vol.166, issue.5, pp.1355-68, 2010.
DOI : 10.4049/jimmunol.166.4.2479

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2944234

J. Passwell, R. Shor, and J. Shoham, The enhancing effect of interferon-beta and -gamma on the killing of Leishmania tropica major in human mononuclear phagocytes in vitro, J Immunol, vol.136, issue.8, pp.3062-3068, 1986.

P. Manna, D. Bharadwaj, S. Bhattacharya, G. Chakrabarti, D. Basu et al., Impairment of natural killer cell activity in Indian kala-azar: restoration of activity by interleukin 2 but not by alpha or gamma interferon, Infect Immun, issue.8, pp.613565-613574, 1993.

H. Trau, M. Schewach-millet, J. Shoham, T. Doerner, R. Shor et al., Topical application of human fibroblast interferon (IFN) in cutaneous leishmaniasis, Isr J Med Sci, vol.23, issue.11, pp.1125-1132, 1987.

D. Chaussabel, R. Semnani, M. Mcdowell, D. Sacks, A. Sher et al., Unique gene expression profiles of human macrophages and dendritic cells to phylogenetically distinct parasites, Blood, vol.102, issue.2, pp.672-81, 2003.
DOI : 10.1182/blood-2002-10-3232

M. Favila, N. Geraci, E. Zeng, B. Harker, D. Condon et al., Human Dendritic Cells Exhibit a Pronounced Type I IFN Signature following Leishmania major Infection That Is Required for IL-12 Induction, The Journal of Immunology, vol.192, issue.12, pp.5863-72, 2014.
DOI : 10.4049/jimmunol.1203230

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4052223

P. Macgregor, B. Szö?r, N. Savill, and K. Matthews, Trypanosomal immune evasion , chronicity and transmission: an elegant balancing act How the African trypanosomes evade host immune killing, Nat Rev Microbiol Parasite Immunol, vol.10, issue.338, pp.431-439, 2011.

M. Cardoso, J. Reis-cunha, and D. Bartholomeu, Evasion of the Immune Response by Trypanosoma cruzi during Acute Infection, Frontiers in Immunology, vol.24, issue.3, 2016.
DOI : 10.1590/S0034-89101990000300002

A. Chessler, M. Unnikrishnan, A. Bei, J. Daily, and B. Burleigh, Trypanosoma cruzi Triggers an Early Type I IFN Response In Vivo at the Site of Intradermal Infection, The Journal of Immunology, vol.182, issue.4, pp.2288-96, 2009.
DOI : 10.4049/jimmunol.0800621

J. Costales, J. Daily, and B. Burleigh, Cytokine-dependent and???independent gene expression changes and cell cycle block revealed in Trypanosoma cruzi-infected host cells by comparative mRNA profiling, BMC Genomics, vol.10, issue.1, pp.252-262, 2009.
DOI : 10.1186/1471-2164-10-252

URL : http://doi.org/10.1186/1471-2164-10-252

S. Vaena-de-avalos, I. Blader, M. Fisher, J. Boothroyd, and B. Burleigh, Infection Involves Minimal Modulation of Host Cell Transcription, Journal of Biological Chemistry, vol.26, issue.1, pp.639-683, 2002.
DOI : 10.1073/pnas.95.25.14863

A. Chessler, L. Ferreira, T. Chang, K. Fitzgerald, and B. Burleigh, A Novel IFN Regulatory Factor 3-Dependent Pathway Activated by Trypanosomes Triggers IFN-? in Macrophages and Fibroblasts, The Journal of Immunology, vol.181, issue.11, pp.7917-7941, 2008.
DOI : 10.4049/jimmunol.181.11.7917

S. James, T. Kipnis, A. Sher, and R. Hoff, Enhanced resistance to acute infection with Trypanosoma cruzi in mice treated with an interferon inducer, Infect Immun, vol.35, issue.2, pp.588-93, 1982.

M. Rottenberg, R. Cardoni, R. Andersson, E. Segura, and A. Orn, Role of T Helper/Inducer Cells as well as Natural Killer Cells in Resistance to Trypanosoma cruzi Infection, Scandinavian Journal of Immunology, vol.5, issue.5, pp.573-82, 1988.
DOI : 10.1016/0014-4894(78)90055-3

V. Costa, K. Torres, R. Mendonça, I. Gresser, K. Gollob et al., Type I IFNs Stimulate Nitric Oxide Production and Resistance to Trypanosoma cruzi Infection, The Journal of Immunology, vol.177, issue.5, pp.3193-200, 2006.
DOI : 10.4049/jimmunol.177.5.3193

C. Une, J. Andersson, and A. Orn, Role of IFN-alpha/beta and IL-12 in the activation of natural killer cells and interferon-gamma production during experimental infection with Trypanosoma cruzi, Clinical and Experimental Immunology, vol.71, issue.2, pp.195-201, 2003.
DOI : 10.1128/IAI.70.1.36-48.2002

A. Chessler, K. Caradonna, A. Da-'dara, and B. Burleigh, Type I Interferons Increase Host Susceptibility to Trypanosoma cruzi Infection, Infection and Immunity, vol.79, issue.5, pp.2112-2121, 2011.
DOI : 10.1128/IAI.01176-10

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3088151

D. Martin, K. Murali-krishna, and R. Tarleton, Generation of Trypanosoma cruzi-Specific CD8+ T-Cell Immunity Is Unaffected by the Absence of Type I Interferon Signaling, Infection and Immunity, vol.78, issue.7, pp.3154-3163, 2010.
DOI : 10.1128/IAI.00275-10

C. Bogdan, J. Mattner, and U. Schleicher, The role of type I interferons in non-viral infections, Immunological Reviews, vol.52, issue.1, pp.33-48, 2004.
DOI : 10.3181/00379727-123-31625

P. Vincendeau and B. Bouteille, Immunology and immunopathology of African trypanosomiasis, Anais da Academia Brasileira de Ci?ncias, vol.84, issue.4, pp.645-65, 2006.
DOI : 10.1006/expr.1996.0118

URL : https://hal.archives-ouvertes.fr/hal-00355691

R. Lopez, K. Demick, J. Mansfield, and D. Paulnock, Type I IFNs Play a Role in Early Resistance, but Subsequent Susceptibility, to the African Trypanosomes, The Journal of Immunology, vol.181, issue.7, pp.4908-4925, 2008.
DOI : 10.4049/jimmunol.181.7.4908

D. Amin, S. Vodnala, W. Masocha, B. Sun, K. Kristensson et al., Distinct Toll-like Receptor Signals Regulate Cerebral Parasite Load and Interferon ?/? and Tumor Necrosis Factor ??Dependent T-Cell Infiltration in the Brains of Trypanosoma brucei?Infected Mice, The Journal of Infectious Diseases, vol.205, issue.2, pp.320-352, 2012.
DOI : 10.1093/infdis/jir734