P. Westermark, The pathogenesis of amyloidosis: understanding general principles, Am J Pathol, vol.152, pp.1125-1132, 1998.

D. Soprano, J. Herbert, K. Soprano, E. Schon, and D. Goodman, Demonstration of transthyretin mRNA in the brain and other extrahepatic tissues in the rat, J Biol Chem, vol.260, pp.11793-11801, 1985.

P. Dickson, A. Aldred, P. Marley, D. Bannister, and G. Schreiber, Rat choroid plexus specializes in the synthesis and the secretion of transthyretin (prealbumin) Regulation of transthyretin synthesis in choroid plexus is independent from that in liver, J Biol Chem, vol.261, pp.3475-3483, 1986.

M. Kanai, A. Raz, and D. Goodman, Retinol-binding protein: the transport protein for vitamin A in human plasma, Journal of Clinical Investigation, vol.47, issue.9, pp.2025-2069, 1968.
DOI : 10.1172/JCI105889

M. Liz, C. Faro, M. Saraiva, and M. Sousa, Transthyretin, a New Cryptic Protease, Journal of Biological Chemistry, vol.279, issue.20, pp.21431-21439, 2004.
DOI : 10.1074/jbc.M402212200

J. Buxbaum, A. Roberts, A. Adame, and E. Masliah, Silencing of murine transthyretin and retinol binding protein genes has distinct and shared behavioral and neuropathologic effects, Neuroscience, vol.275, pp.352-64, 2014.
DOI : 10.1016/j.neuroscience.2014.06.019

S. Santos, K. Lambertsen, B. Clausen, A. Akinc, R. Alvarez et al., CSF transthyretin neuroprotection in a mouse model of brain ischemia, Journal of Neurochemistry, vol.38, issue.6, pp.1434-1478, 2010.
DOI : 10.1111/j.1471-4159.2010.07047.x

J. Gomes, R. Nogueira, M. Vieira, S. Santos, J. Ferraz-nogueira et al., Transthyretin provides trophic support via megalin by promoting neurite outgrowth and neuroprotection in cerebral ischemia, Cell Death and Differentiation, vol.266, issue.11, pp.1749-64, 2016.
DOI : 10.1371/journal.pone.0102526

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5071567

A. Schwarzman, L. Gregori, M. Vitek, S. Lyubski, W. Strittmatter et al., Transthyretin sequesters amyloid beta protein and prevents amyloid formation., Proceedings of the National Academy of Sciences, vol.91, issue.18, pp.8368-72, 1994.
DOI : 10.1073/pnas.91.18.8368

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC44607/pdf

M. Vieira and M. Saraiva, Transthyretin regulates hippocampal 14-3-3?? protein levels, FEBS Letters, vol.14, issue.10, pp.1482-1490, 2013.
DOI : 10.1016/j.febslet.2013.03.011

URL : http://doi.org/10.1016/j.febslet.2013.03.011

Y. Su, H. Jono, Y. Misumi, T. Senokuchi, J. Guo et al., Novel function of transthyretin in pancreatic alpha cells, FEBS Letters, vol.38, issue.23, pp.4215-4237, 2012.
DOI : 10.1016/j.febslet.2012.10.025

J. Hamilton, L. Steinrauf, B. Braden, J. Liepnieks, M. Benson et al., The x-ray crystal structure refinements of normal human transthyretin and the amyloidogenic Val-30?Met variant to 1.7-A resolution, J Biol Chem, vol.268, pp.2416-2440, 1993.

W. Colon and J. Kelly, Partial denaturation of transthyretin is sufficient for amyloid fibril formation in vitro, Biochemistry, vol.31, issue.36, pp.8654-60, 1992.
DOI : 10.1021/bi00151a036

A. Quintas, D. Vaz, I. Cardoso, M. Saraiva, and R. Brito, Tetramer Dissociation and Monomer Partial Unfolding Precedes Protofibril Formation in Amyloidogenic Transthyretin Variants, Journal of Biological Chemistry, vol.276, issue.29, pp.27207-27220, 2001.
DOI : 10.1074/jbc.M101024200

M. Sousa, I. Cardoso, R. Fernandes, A. Guimarães, and M. Saraiva, Deposition of Transthyretin in Early Stages of Familial Amyloidotic Polyneuropathy, The American Journal of Pathology, vol.159, issue.6, pp.1993-2000, 2001.
DOI : 10.1016/S0002-9440(10)63050-7

N. Reixach, S. Deechongkit, X. Jiang, J. Kelly, and J. Buxbaum, Tissue damage in the amyloidoses: Transthyretin monomers and nonnative oligomers are the major cytotoxic species in tissue culture, Proceedings of the National Academy of Sciences, vol.28, issue.11, pp.2817-2839, 2004.
DOI : 10.1016/j.tibs.2003.09.009

J. Saraiva, J. Magalhaes, N. Ferreira, and R. Almeida, Transthyretin Deposition in Familial Amyloidotic Polyneuropathy, Current Medicinal Chemistry, vol.19, issue.15, pp.2304-2315, 2012.
DOI : 10.2174/092986712800269236

URL : https://hal.archives-ouvertes.fr/hal-00501578

M. Sousa, S. Yan, D. Stern, and M. Saraiva, Interaction of the Receptor for Advanced Glycation End Products (RAGE) with Transthyretin Triggers Nuclear Transcription Factor kB (NF-kB) Activation, Laboratory Investigation, vol.25, issue.7, pp.1101-1111, 2000.
DOI : 10.1038/382685a0

M. Sousa, D. Yan, S. Fernandes, R. Guimarães, A. Stern et al., Familial amyloid polyneuropathy: receptor for advanced glycation end products-dependent triggering of neuronal inflammatory and apoptotic pathways, J Neurosci, vol.21, pp.7576-86, 2001.

F. Monteiro, M. Sousa, I. Cardoso, J. Amaral, A. Guimarães et al., Activation of ERK1/2 MAP kinases in Familial Amyloidotic Polyneuropathy, Journal of Neurochemistry, vol.161, issue.1, pp.151-61, 2006.
DOI : 10.1016/S0014-5793(03)00603-3

Y. Akasaki, N. Reixach, T. Matsuzaki, O. Alvarez-garcia, M. Olmer et al., Transthyretin Deposition in Articular Cartilage: A Novel Mechanism in the Pathogenesis of Osteoarthritis, Arthritis & Rheumatology, vol.310, issue.8, pp.2097-107, 2015.
DOI : 10.1002/art.39178

J. Buxbaum, C. Tagoe, G. Gallo, J. Walker, S. Kurian et al., Why are some amyloidoses systemic? Does hepatic "chaperoning at a distance" prevent cardiac deposition in a transgenic model of human senile systemic (transthyretin) amyloidosis?, The FASEB Journal, vol.26, issue.6, pp.2283-93, 2012.
DOI : 10.1096/fj.11-189571

N. Goncalves, M. Teixeira-coelho, and M. Saraiva, The inflammatory response to sciatic nerve injury in a familial amyloidotic polyneuropathy mouse model, Experimental Neurology, vol.257, pp.76-87, 2014.
DOI : 10.1016/j.expneurol.2014.04.030

N. Goncalves, P. Vieira, and M. Saraiva, Interleukin-1 signaling pathway as a therapeutic target in transthyretin amyloidosis, Amyloid, vol.19, issue.3, pp.175-84, 2014.
DOI : 10.1186/1479-5876-8-74

URL : https://hal.archives-ouvertes.fr/pasteur-01071597

K. Misu, N. Hattori, M. Nagamatsu, S. Ikeda, Y. Ando et al., Late-onset familial amyloid polyneuropathy type I (transthyretin Met30-associated familial amyloid polyneuropathy) unrelated to endemic focus in Japan: Clinicopathological and genetic features, Brain, vol.122, issue.10, pp.1951-62, 1999.
DOI : 10.1093/brain/122.10.1951

K. Yamamoto, T. Kawakubo, A. Yasukochi, and T. Tsukuba, Emerging roles of cathepsin E in host defense mechanisms, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1824, issue.1, pp.105-117, 1824.
DOI : 10.1016/j.bbapap.2011.05.022

T. Kawakubo, A. Yasukochi, T. Toyama, S. Takahashi, K. Okamoto et al., Repression of cathepsin E expression increases the risk of mammary carcinogenesis and links to poor prognosis in breast cancer, Carcinogenesis, vol.35, issue.3, pp.714-740, 2014.
DOI : 10.1093/carcin/bgt373

M. Konno-shimizu, N. Yamamichi, K. Inada, N. Kageyama-yahara, K. Shiogama et al., Cathepsin E Is a Marker of Gastric Differentiation and Signet-Ring Cell Carcinoma of Stomach: A Novel Suggestion on Gastric Tumorigenesis, PLoS ONE, vol.19, issue.2, p.56766, 2013.
DOI : 10.1371/journal.pone.0056766.s009

T. Kawakubo, K. Okamoto, J. Iwata, M. Shin, Y. Okamoto et al., Cathepsin E Prevents Tumor Growth and Metastasis by Catalyzing the Proteolytic Release of Soluble TRAIL from Tumor Cell Surface, Cancer Research, vol.67, issue.22, pp.10869-78, 2007.
DOI : 10.1158/0008-5472.CAN-07-2048

H. Bernstein and B. Wiederanders, An immunohistochemical study of cathepsin E in Alzheimer-type dementia brains, Brain Research, vol.667, issue.2, pp.287-90, 1994.
DOI : 10.1016/0006-8993(94)91509-1

K. Van-dijk, E. Persichetti, D. Chiasserini, P. Eusebi, T. Beccari et al., Changes in endolysosomal enzyme activities in cerebrospinal fluid of patients with Parkinson's disease, Movement Disorders, vol.34, issue.6, pp.747-54, 2013.
DOI : 10.1002/mds.25495

N. Gonçalves, D. Martins, and M. Saraiva, Overexpression of Protocadherin-10 in Transthyretin-Related Familial Amyloidotic Polyneuropathy, The American Journal of Pathology, vol.186, issue.7, pp.1913-1937, 2016.
DOI : 10.1016/j.ajpath.2016.02.020

K. Kohno, J. Palha, K. Miyakawa, M. Saraiva, S. Ito et al., Analysis of amyloid deposition in a transgenic mouse model of homozygous familial amyloidotic polyneuropathy, Am J Pathol, vol.150, pp.1497-508, 1997.

S. Santos, R. Fernandes, and M. Saraiva, The heat shock response modulates transthyretin deposition in the peripheral and autonomic nervous systems, Neurobiology of Aging, vol.31, issue.2, pp.280-289, 2010.
DOI : 10.1016/j.neurobiolaging.2008.04.001

P. Brumovsky, E. Bergman, H. Liu, T. Hökfelt, and M. Villar, Effect of a graded single constriction of the rat sciatic nerve on pain behavior and expression of immunoreactive NPY and NPY Y1 receptor in DRG neurons and spinal cord, Brain Research, vol.1006, issue.1, pp.87-99, 2004.
DOI : 10.1016/j.brainres.2003.09.085

S. Semple, A. Akinc, J. Chen, A. Sandhu, B. Mui et al., Rational design of cationic lipids for siRNA delivery, Nature Biotechnology, vol.22, issue.2, pp.172-178, 2010.
DOI : 10.1038/nbt.1602

J. Butler, A. Chan, S. Costelha, S. Fishman, J. Willoughby et al., Preclinical evaluation of RNAi as a treatment for transthyretin-mediated amyloidosis, Amyloid, vol.2008, issue.2, pp.109-127, 2016.
DOI : 10.1016/S0002-9440(10)63050-7

N. Goncalves, P. Gonçalves, J. Magalhães, M. Ventosa, A. Coelho et al., Tissue remodeling after interference RNA mediated knockdown of transthyretin in a familial amyloidotic polyneuropathy mouse model, Neurobiology of Aging, vol.47, pp.91-101, 2016.
DOI : 10.1016/j.neurobiolaging.2016.07.020

K. Jessen and R. Mirsky, The origin and development of glial cells in peripheral nerves, Nature Reviews Neuroscience, vol.109, issue.9, pp.671-82, 2005.
DOI : 10.1006/mcne.1996.0589

M. Richner, M. Ulrichsen, S. Elmegaard, R. Dieu, L. Pallesen et al., Peripheral Nerve Injury Modulates Neurotrophin Signaling in the Peripheral and Central Nervous System, Molecular Neurobiology, vol.13, issue.49, pp.945-70, 2014.
DOI : 10.1007/s12035-014-8706-9

D. Lutz, G. Wolters-eisfeld, M. Schachner, and R. Kleene, Cathepsin E generates a sumoylated intracellular fragment of the cell adhesion molecule L1 to promote neuronal and Schwann cell migration as well as myelination, Journal of Neurochemistry, vol.26, issue.Pt 24, pp.713-737, 2014.
DOI : 10.1111/jnc.12473

N. Ferreira, S. Santos, M. Domingues, M. Saraiva, and M. Almeida, Dietary curcumin counteracts extracellular transthyretin deposition: Insights on the mechanism of amyloid inhibition, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1832, issue.1, pp.39-45, 1832.
DOI : 10.1016/j.bbadis.2012.10.007

I. Cardoso, D. Martins, T. Ribeiro, G. Merlini, and M. Saraiva, Synergy of combined Doxycycline/TUDCA treatment in lowering Transthyretin deposition and associated biomarkers: studies in FAP mouse models, Journal of Translational Medicine, vol.8, issue.1, p.74, 2010.
DOI : 10.1186/1479-5876-8-74

H. Kakehashi, T. Nishioku, T. Tsukuba, T. Kadowaki, S. Nakamura et al., Differential Regulation of the Nature and Functions of Dendritic Cells and Macrophages by Cathepsin E, The Journal of Immunology, vol.179, issue.9, pp.5728-5765, 2007.
DOI : 10.4049/jimmunol.179.9.5728

G. Suenaga, T. Ikeda, Y. Komohara, K. Takamatsu, T. Kakuma et al., Involvement of Macrophages in the Pathogenesis of Familial Amyloid Polyneuropathy and Efficacy of Human iPS Cell-Derived Macrophages in Its Treatment, PLOS ONE, vol.67, issue.10, p.163944, 2016.
DOI : 10.1371/journal.pone.0163944.s004

N. Ferreira, N. Gonçalves, M. Saraiva, and M. Almeida, Curcumin: A multi-target disease-modifying agent for late-stage transthyretin amyloidosis, Scientific Reports, vol.193, issue.1, p.26623, 2016.
DOI : 10.4049/jimmunol.1401088

H. Koike, K. Misu, M. Sugiura, M. Iijima, K. Mori et al., Pathology of early- vs late-onset TTR Met30 familial amyloid polyneuropathy, Neurology, vol.63, issue.1, pp.129-167, 2004.
DOI : 10.1212/01.WNL.0000132966.36437.12

H. Koike, S. Ikeda, M. Takahashi, Y. Kawagashira, M. Iijima et al., Schwann cell and endothelial cell damage in transthyretin familial amyloid polyneuropathy, Neurology, vol.87, issue.21, pp.2220-2229, 2016.
DOI : 10.1212/WNL.0000000000003362

T. Tsukuba, M. Yanagawa, K. Okamoto, Y. Okamoto, Y. Yasuda et al., Impaired chemotaxis and cell adhesion due to decrease in several cell-surface receptors in cathepsin E-deficient macrophages, Journal of Biochemistry, vol.145, issue.5, pp.565-73, 2009.
DOI : 10.1093/jb/mvp016

P. Murray and T. Wynn, Protective and pathogenic functions of macrophage subsets, Nature Reviews Immunology, vol.332, issue.11, pp.723-760, 2011.
DOI : 10.1038/nri3073

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3422549

E. Kasmi, K. Stenmark, and K. , Contribution of metabolic reprogramming to macrophage plasticity and function, Seminars in Immunology, vol.27, issue.4, pp.267-75, 2015.
DOI : 10.1016/j.smim.2015.09.001

T. Tsukuba, M. Yanagawa, T. Kadowaki, R. Takii, Y. Okamoto et al., Cathepsin E Deficiency Impairs Autophagic Proteolysis in Macrophages, PLoS ONE, vol.443, issue.12, p.82415, 2013.
DOI : 10.1371/journal.pone.0082415.g009

URL : http://doi.org/10.1371/journal.pone.0082415

F. Brambilla, F. Lavatelli, D. Silvestre, D. Valentini, V. Palladini et al., Shotgun Protein Profile of Human Adipose Tissue and Its Changes in Relation to Systemic Amyloidoses, Journal of Proteome Research, vol.12, issue.12, pp.5642-55, 2013.
DOI : 10.1021/pr400583h

H. Li, Y. Zhang, L. Cao, R. Xiong, B. Zhang et al., Curcumin could reduce the monomer of TTR with Tyr114Cys mutation via autophagy in cell model of familial amyloid polyneuropathy, Drug Des Devel Ther, vol.8, pp.2121-2129, 2014.

C. Teixeira, M. Almeida, and M. Saraiva, Impairment of autophagy by TTR V30M aggregates: in vivo reversal by TUDCA and curcumin, Clinical Science, vol.130, issue.18, pp.1665-75, 2016.
DOI : 10.1042/CS20160075