A. Mosaid, A. , D. J. Sullivan, and D. C. Coleman, Differentiation of Candida dubliniensis from Candida albicans on Pal's Agar, Journal of Clinical Microbiology, vol.41, issue.10, pp.4787-4789, 2003.
DOI : 10.1128/JCM.41.10.4787-4789.2003

M. B. Arnaud, M. C. Costanzo, M. S. Skrzypek, P. Shah, G. Binkley et al., Sequence resources at the Candida Genome Database, Nucleic Acids Research, vol.35, issue.Database, pp.452-456, 2007.
DOI : 10.1093/nar/gkl899

URL : http://doi.org/10.1093/nar/gkl899

J. Bauer and J. Wendland, Candida albicans Sfl1 Suppresses Flocculation and Filamentation, Eukaryotic Cell, vol.6, issue.10, pp.1736-1744, 2007.
DOI : 10.1128/EC.00236-07

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2043394

D. H. Brown, A. D. Giusani, X. Chen, and C. A. Kumamoto, Filamentous growth of Candida albicans in response to physical environmental cues and its regulation by the unique CZF1 gene, Molecular Microbiology, vol.89, issue.4, pp.651-662, 1999.
DOI : 10.1093/emboj/16.8.1982

S. Delbrück and J. F. Ernst, Morphogenesis-independent regulation of actin transcript levels in the pathogenic yeast Candida albicans, Molecular Microbiology, vol.136, issue.4, pp.859-866, 1993.
DOI : 10.1073/pnas.81.15.4889

G. Dimopoulos, F. Ntziora, G. Rachiotis, A. Armaganidis, and M. E. Falagas, Candida Albicans Versus Non-Albicans Intensive Care Unit-Acquired Bloodstream Infections: Differences in Risk Factors and Outcome, Anesthesia & Analgesia, vol.106, issue.2, pp.523-529, 2008.
DOI : 10.1213/ane.0b013e3181607262

G. D. Gilfillan, D. J. Sullivan, K. Haynes, T. Parkinson, D. C. Coleman et al., Candida dubliniensis: phylogeny and putative virulence factors, Microbiology, vol.144, issue.4, pp.829-838, 1998.
DOI : 10.1099/00221287-144-4-829

A. M. Gillum, E. Y. Tsay, and D. R. Kirsch, Isolation of the Candida albicans gene for orotidine-5?-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations, MGG Molecular & General Genetics, vol.180, issue.1, pp.179-182, 1984.
DOI : 10.1007/BF00328721

K. Hokamp, F. M. Roche, M. Acab, M. E. Rousseau, B. Kuo et al., ArrayPipe: a flexible processing pipeline for microarray data, Nucleic Acids Research, vol.32, issue.Web Server, pp.457-459, 2004.
DOI : 10.1093/nar/gkh446

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC441584

A. P. Jackson, J. A. Gamble, T. Yeomans, G. P. Moran, D. Saunders et al., Comparative genomics of the fungal pathogens Candida dubliniensis and Candida albicans, Genome Research, vol.19, issue.12, pp.2231-2244, 2009.
DOI : 10.1101/gr.097501.109

J. Jayatilake, Y. H. Samaranayake, L. K. Cheung, and L. P. Samaranayake, Quantitative evaluation of tissue invasion by wild type, hyphal and SAP mutants of Candida albicans, and non-albicans Candida species in reconstituted human oral epithelium, Journal of Oral Pathology and Medicine, vol.148, issue.8, pp.484-491, 2006.
DOI : 10.1128/MMBR.67.3.400-428.2003

T. Jones, N. A. Federspiel, H. Chibana, J. Dungan, S. Kalman et al., The diploid genome sequence of Candida albicans, Proceedings of the National Academy of Sciences, vol.175, issue.20, pp.7329-7334, 2004.
DOI : 10.1128/MCB.20.3.971-978.2000

T. Klengel, W. J. Liang, J. Chaloupka, C. Ruoff, K. Schroppel et al., Fungal Adenylyl Cyclase Integrates CO2 Sensing with cAMP Signaling and Virulence, Current Biology, vol.15, issue.22, pp.2021-2026, 2005.
DOI : 10.1016/j.cub.2005.10.040

URL : http://doi.org/10.1016/j.cub.2005.11.043

U. Lermann and J. Morschhäuser, Secreted aspartic proteases are not required for invasion of reconstituted human epithelia by Candida albicans, Microbiology, vol.154, issue.11, pp.3281-3295, 2008.
DOI : 10.1099/mic.0.2008/022525-0

Y. Li, C. Su, X. Mao, F. Cao, and J. Chen, Roles of Candida albicans Sfl1 in Hyphal Development, Eukaryotic Cell, vol.6, issue.11, pp.2112-2121, 2007.
DOI : 10.1128/EC.00199-07

H. P. Liu, J. Kohler, and G. R. Fink, Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog, Science, vol.266, issue.5191, pp.1723-1726, 1994.
DOI : 10.1126/science.7992058

D. M. Maccallum, L. Castillo, A. J. Brown, N. A. Gow, and F. C. Odds, Early-Expressed Chemokines Predict Kidney Immunopathology in Experimental Disseminated Candida albicans Infections, PLoS ONE, vol.280, issue.7, p.6420, 2009.
DOI : 10.1371/journal.pone.0006420.s001

M. Martinez, J. L. Lopez-ribot, W. R. Kirkpatrick, B. J. Coco, S. P. Bachmann et al., Replacement of Candida albicans with C. dubliniensis in Human Immunodeficiency Virus-Infected Patients with Oropharyngeal Candidiasis Treated with Fluconazole, Journal of Clinical Microbiology, vol.40, issue.9, pp.3135-3139, 2002.
DOI : 10.1128/JCM.40.9.3135-3139.2002

B. A. Mcmanus, D. C. Coleman, G. Moran, E. Pinjon, D. Diogo et al., Multilocus Sequence Typing Reveals that the Population Structure of Candida dubliniensis Is Significantly Less Divergent than That of Candida albicans, Journal of Clinical Microbiology, vol.46, issue.2, pp.652-664, 2008.
DOI : 10.1128/JCM.01574-07

G. Moran, C. Stokes, S. Thewes, B. Hube, D. C. Coleman et al., Comparative genomics using Candida albicans DNA microarrays reveals absence and divergence of virulence-associated genes in Candida dubliniensis, Microbiology, vol.150, issue.10, pp.3363-3382, 2004.
DOI : 10.1099/mic.0.27221-0

G. P. Moran, D. M. Maccallum, M. J. Spiering, D. C. Coleman, and D. J. Sullivan, Differential regulation of the transcriptional repressor NRG1 accounts for altered host-cell interactions in Candida albicans and Candida dubliniensis, Molecular Microbiology, vol.141, issue.4, pp.915-929, 2007.
DOI : 10.1080/714031113

J. Morschhäuser, M. Ruhnke, S. Michel, and J. Hacker, Identification of CARE-2-negative Candida albicans isolates as Candida dubliniensis, Mycoses, vol.36, issue.1-2, pp.29-32, 1999.
DOI : 10.1046/j.1439-0507.1999.00259.x

A. M. Murad, P. R. Lee, I. D. Broadbent, C. J. Barelle, and A. J. Brown, CIp10, an efficient and convenient integrating vector forCandida albicans, Yeast, vol.48, issue.4, pp.325-327, 2000.
DOI : 10.1002/1097-0061(20000315)16:4<325::AID-YEA538>3.0.CO;2-#

B. Schaller and . Hube, Quantitative expression of the Candida albicans secreted aspartyl proteinase gene family in human oral and vaginal candidiasis, Microbiology, vol.154, pp.3266-3280, 2008.

F. C. Odds, M. F. Hanson, A. D. Davidson, M. D. Jacobsen, P. Wright et al., One year prospective survey of Candida bloodstream infections in Scotland, Journal of Medical Microbiology, vol.56, issue.8, pp.1066-1075, 2007.
DOI : 10.1099/jmm.0.47239-0

F. C. Odds, L. Van-nuffel, and G. Dams, Prevalence of Candida dubliniensis isolates in a yeast stock collection, J. Clin. Microbiol, vol.36, pp.2869-2873, 1998.

H. Park, Y. Liu, N. Solis, J. Spotkov, J. Hamaker et al., Transcriptional Responses of Candida albicans to Epithelial and Endothelial Cells, Eukaryotic Cell, vol.8, issue.10, pp.1488-1510, 2008.
DOI : 10.1128/EC.00165-09

Y. N. Park and J. Morschhäuser, Tetracycline-Inducible Gene Expression and Gene Deletion in Candida albicans, Eukaryotic Cell, vol.4, issue.8, pp.1328-1342, 2005.
DOI : 10.1128/EC.4.8.1328-1342.2005

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1214539

Q. T. Phan, P. H. Belanger, and S. G. Filler, Role of Hyphal Formation in Interactions of Candida albicans with Endothelial Cells, Infection and Immunity, vol.68, issue.6, pp.3485-3490, 2000.
DOI : 10.1128/IAI.68.6.3485-3490.2000

Q. T. Phan, C. L. Myers, Y. Fu, D. C. Sheppard, M. R. Yeaman et al., Als3 Is a Candida albicans Invasin That Binds to Cadherins and Induces Endocytosis by Host Cells, PLoS Biology, vol.2, issue.3, pp.543-557, 2007.
DOI : 10.1371/journal.pbio.0050064.sg003

E. Pinjon, G. P. Moran, D. C. Coleman, and D. J. Sullivan, : Figure 1, Biochemical Society Transactions, vol.33, issue.5, pp.1210-1214, 2005.
DOI : 10.1042/BST0331210

O. Reuß, A. Vik, R. Kolter, and J. Morschhäuser, The SAT1 flipper, an optimized tool for gene disruption in Candida albicans, Gene, vol.341, pp.119-127, 2004.
DOI : 10.1016/j.gene.2004.06.021

M. E. Ritchie, J. Silver, A. Oshlack, M. Holmes, D. Diyagama et al., A comparison of background correction methods for two-colour microarrays, Bioinformatics, vol.23, issue.20, pp.2700-2707, 2007.
DOI : 10.1093/bioinformatics/btm412

M. Schaller, K. Zakikhany, J. R. Naglik, G. Weindl, and B. Hube, Models of oral and vaginal candidiasis based on in vitro reconstituted human epithelia, Nature Protocols, vol.198, issue.6, pp.2767-2773, 2006.
DOI : 10.1038/nprot.2006.474

W. Sims, Effect of carbon dioxide on the growth and form of Candida albicans, Journal of Medical Microbiology, vol.22, issue.3, pp.203-208, 1986.
DOI : 10.1099/00222615-22-3-203

M. Slifkin, Tween 80 opacity test responses of various Candida species, J. Clin. Microbiol, vol.38, pp.4626-4628, 2000.

G. K. Smyth, Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments, Statistical Applications in Genetics and Molecular Biology, vol.3, issue.1, 2004.
DOI : 10.2202/1544-6115.1027

M. J. Spiering, J. R. Faulkner, D. Zhang, C. Machado, R. B. Grossman et al., Role of the LolP cytochrome P450 monooxygenase in loline alkaloid biosynthesis, Fungal Genetics and Biology, vol.45, issue.9, pp.1307-1314, 2008.
DOI : 10.1016/j.fgb.2008.07.001

C. Stokes, G. P. Moran, M. Spiering, G. T. Cole, D. C. Coleman et al., Lower filamentation rates of Candida dubliniensis contribute to its lower virulence in comparison with Candida albicans, Fungal Genetics and Biology, vol.44, issue.9, pp.920-931, 2007.
DOI : 10.1016/j.fgb.2006.11.014

D. J. Sullivan, G. P. Moran, and D. C. Coleman, Candida dubliniensis: Ten years on, FEMS Microbiology Letters, vol.253, issue.1, pp.9-17, 2005.
DOI : 10.1016/j.femsle.2005.09.015

D. J. Sullivan, G. P. Moran, E. Pinjon, A. Al-mosaid, C. Stokes et al., Comparison of the epidemiology, drug resistance mechanisms, and virulence of and, FEMS Yeast Research, vol.4, issue.4-5, pp.369-376, 2004.
DOI : 10.1016/S1567-1356(03)00240-X

D. J. Sullivan, T. J. Westerneng, K. A. Haynes, D. E. Bennett, and D. C. Coleman, Candida dubliniensis sp. nov.: phenotypic and molecular characterization of a novel species associated with oral candidosis in HIV-infected individuals, Microbiology, vol.141, issue.7, pp.1507-1521, 1995.
DOI : 10.1099/13500872-141-7-1507

S. Thaweboon, B. Thaweboon, T. Srithavaj, and S. Choonharuangdej, Oral colonization of Candida species in patients receiving radiotherapy in the head and neck area, Quintessence Int, vol.39, pp.52-57, 2008.

S. Thewes, M. Kretschmar, H. Park, M. Schaller, S. G. Filler et al., In vivo and ex vivo comparative transcriptional profiling of invasive and non-invasive Candida albicans isolates identifies genes associated with tissue invasion, Molecular Microbiology, vol.41, issue.6, pp.1606-1628, 2007.
DOI : 10.1111/j.1365-2958.2007.05614.x

N. M. Tsoukias, Z. Tannous, A. F. Wilson, and S. C. George, Singleexhalation profiles of NO and CO 2 in humans: effect of dynamically changing flow rate, J. Appl. Physiol, vol.85, pp.642-652, 1998.

R. N. Van-gelder, M. E. Von-zastrow, A. Yool, W. C. Dement, J. D. Barchas et al., Amplified RNA synthesized from limited quantities of heterogeneous cDNA., Proceedings of the National Academy of Sciences, vol.87, issue.5, pp.1663-1667, 1990.
DOI : 10.1073/pnas.87.5.1663

R. B. Wilson, D. Davis, and A. P. Mitchell, Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions, J. Bacteriol, vol.181, pp.1868-1874, 1999.

L. Wong and C. H. Sissions, A comparison of human dental plaque microcosm biofilms grown in an undefined medium and a chemically defined artificial saliva, Archives of Oral Biology, vol.46, issue.6, pp.477-486, 2001.
DOI : 10.1016/S0003-9969(01)00016-4

K. Zakikhany, J. R. Naglik, A. Schmidt-westhausen, G. Holland, M. Schaller et al., In vivo transcript profiling of Candida albicans identifies a gene essential for interepithelial dissemination, Cellular Microbiology, vol.3, issue.12, pp.2938-2954, 2007.
DOI : 10.1111/j.1462-5822.2007.01009.x