R. S. Al-dhaheri and L. J. Douglas, Absence of Amphotericin B-Tolerant Persister Cells in Biofilms of Some Candida Species, Antimicrobial Agents and Chemotherapy, vol.52, issue.5, pp.1884-1887, 2008.
DOI : 10.1128/AAC.01473-07

M. A. Al-fattani and L. J. Douglas, Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance, Journal of Medical Microbiology, vol.55, issue.8, pp.999-1008, 2006.
DOI : 10.1099/jmm.0.46569-0

M. A. Al-fattani and L. J. Douglas, Penetration of Candida Biofilms by Antifungal Agents, Antimicrobial Agents and Chemotherapy, vol.48, issue.9, pp.3291-3297, 2004.
DOI : 10.1128/AAC.48.9.3291-3297.2004

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC514766

G. G. Anderson and G. A. O-'toole, Innate and Induced Resistance Mechanisms of Bacterial Biofilms, Curr. Top. Microbiol. Immunol, vol.322, pp.85-105, 2008.
DOI : 10.1007/978-3-540-75418-3_5

S. P. Bachmann, K. Vandewalle, G. Ramage, T. F. Patterson, B. L. Wickes et al., In Vitro Activity of Caspofungin against Candida albicans Biofilms, vitro activity of caspofungin against Candida albicans biofilms, pp.3591-3596, 2002.
DOI : 10.1128/AAC.46.11.3591-3596.2002

G. S. Baillie and L. J. Douglas, [48] Candida biofilms and their susceptibility to antifungal agents, Methods Enzymol, vol.310, pp.644-656, 1999.
DOI : 10.1016/S0076-6879(99)10050-8

G. S. Baillie and L. J. Douglas, Effect of growth rate on resistance of Candida albicans biofilms to antifungal agents, Antimicrob. Agents Chemother, vol.42, pp.1900-1905, 1998.

G. S. Baillie and L. J. Douglas, Matrix polymers of Candida biofilms and their possible role in biofilm resistance to antifungal agents, Journal of Antimicrobial Chemotherapy, vol.46, issue.3, pp.397-403, 2000.
DOI : 10.1093/jac/46.3.397

M. Banerjee, D. S. Thompson, A. Lazzell, P. L. Carlisle, C. Pierce et al., UME6, a Novel Filament-specific Regulator of Candida albicans Hyphal Extension and Virulence, Molecular Biology of the Cell, vol.19, issue.4, pp.1354-1365, 2008.
DOI : 10.1091/mbc.E07-11-1110

K. S. Barker, S. Crisp, N. Wiederhold, R. E. Lewis, B. Bareither et al., Genome-wide expression profiling reveals genes associated with amphotericin B and fluconazole resistance in experimentally induced antifungal resistant isolates of Candida albicans, Journal of Antimicrobial Chemotherapy, vol.54, issue.2, pp.376-385, 2004.
DOI : 10.1093/jac/dkh336

J. R. Blankenship and A. P. Mitchell, How to build a biofilm: a fungal perspective, Current Opinion in Microbiology, vol.9, issue.6, pp.588-594, 2006.
DOI : 10.1016/j.mib.2006.10.003

P. L. Carlisle, M. Banerjee, A. Lazzell, C. Monteagudo, J. L. Lopez-ribot et al., Expression levels of a filament-specific transcriptional regulator are sufficient to determine Candida albicans morphology and virulence, Proceedings of the National Academy of Sciences, vol.118, issue.13, pp.599-604, 2009.
DOI : 10.1242/jcs.02414

J. Chandra, D. M. Kuhn, P. K. Mukherjee, L. L. Hoyer, T. Mccormick et al., Biofilm Formation by the Fungal Pathogen Candida albicans: Development, Architecture, and Drug Resistance, Journal of Bacteriology, vol.183, issue.18, pp.5385-5394, 2001.
DOI : 10.1128/JB.183.18.5385-5394.2001

J. Chandra, P. K. Mukherjee, S. D. Leidich, F. F. Faddoul, L. L. Hoyer et al., Antifungal Resistance of Candidal Biofilms Formed on Denture Acrylic in vitro, Journal of Dental Research, vol.80, issue.3, pp.903-908, 2001.
DOI : 10.1177/00220345010800031101

L. E. Cowen and W. J. Steinbach, Stress, Drugs, and Evolution: the Role of Cellular Signaling in Fungal Drug Resistance, Eukaryotic Cell, vol.7, issue.5, pp.747-764, 2008.
DOI : 10.1128/EC.00041-08

C. Enfert, Biofilms and their Role in the Resistance of Pathogenic Candida to Antifungal Agents, Current Drug Targets, vol.7, issue.4, pp.465-470, 2006.
DOI : 10.2174/138945006776359458

L. J. Douglas, Candida biofilms and their role in infection, Trends in Microbiology, vol.11, issue.1, pp.30-36, 2003.
DOI : 10.1016/S0966-842X(02)00002-1

I. V. Ene and R. J. Bennett, Hwp1 and Related Adhesins Contribute to both Mating and Biofilm Formation in Candida albicans, Eukaryotic Cell, vol.8, issue.12, pp.1909-1913, 2009.
DOI : 10.1128/EC.00245-09

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2794213

B. Enjalbert, A. Rachini, G. Vediyappan, D. Pietrella, R. Spaccapelo et al., A Multifunctional, Synthetic Gaussia princeps Luciferase Reporter for Live Imaging of Candida albicans Infections, Infection and Immunity, vol.77, issue.11, pp.4847-4858, 2009.
DOI : 10.1128/IAI.00223-09

S. G. Filler and B. J. Kuhlberg, Deep-seated candidal infections Candida and candidiasis, pp.341-348, 2002.

A. Firon, S. Aubert, I. Iraqui, S. Guadagnini, S. Goyard et al., The SUN41 and SUN42 genes are essential for cell separation in Candida albicans, Molecular Microbiology, vol.181, issue.5, pp.1256-1275
DOI : 10.1111/j.1365-2958.2005.04507.x

W. A. Fonzi, PHR1 and PHR2 of Candida albicans encode putative glycosidases required for proper cross-linking of beta-1,3-and beta-1,6- glucans, J. Bacteriol, vol.181, pp.7070-7079, 1999.

S. Garcia-sánchez, S. Aubert, I. Iraqui, G. Janbon, J. M. Ghigo et al., Candida albicans Biofilms: a Developmental State Associated With Specific and Stable Gene Expression Patterns, Eukaryotic Cell, vol.3, issue.2, pp.536-545, 2004.
DOI : 10.1128/EC.3.2.536-545.2004

A. M. Gillum, E. Y. Tsay, and D. R. Kirsch, Isolation of the Candida albicans gene for orotidine-5?-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations, MGG Molecular & General Genetics, vol.180, issue.1, pp.179-182, 1984.
DOI : 10.1007/BF00328721

B. L. Granger, M. L. Flenniken, D. A. Davis, A. P. Mitchell, and J. E. Cutler, Yeast wall protein 1 of Candida albicans, Microbiology, vol.151, issue.5, pp.1631-1644, 2005.
DOI : 10.1099/mic.0.27663-0

S. P. Hawser, G. S. Baillie, and L. J. Douglas, Production of extracellular matrix by Candida albicans biofilms, Journal of Medical Microbiology, vol.47, issue.3, pp.253-256, 1998.
DOI : 10.1099/00222615-47-3-253

S. P. Hawser and L. J. Douglas, Resistance of Candida albicans biofilms to antifungal agents in vitro, Antimicrobial Agents and Chemotherapy, vol.39, issue.9, pp.2128-2131, 1995.
DOI : 10.1128/AAC.39.9.2128

M. J. Henry-stanley, R. M. Garni, and C. L. Wells, Adaptation of FUN-1 and Calcofluor white stains to assess the ability of viable and nonviable yeast to adhere to and be internalized by cultured mammalian cells, Journal of Microbiological Methods, vol.59, issue.2, pp.289-292, 2004.
DOI : 10.1016/j.mimet.2004.07.001

K. Honraet, E. Goetghebeur, and H. J. Nelis, Comparison of three assays for the quantification of Candida biomass in suspension and CDC reactor grown biofilms, Journal of Microbiological Methods, vol.63, issue.3, pp.287-295, 2005.
DOI : 10.1016/j.mimet.2005.03.014

B. D. Hoyle and J. W. Costerton, Bacterial resistance to antibiotics: The role of biofilms, Prog. Drug Res, vol.37, pp.91-105, 1991.
DOI : 10.1007/978-3-0348-7139-6_2

B. D. Hoyle, J. Jass, and J. W. Costerton, The biofilm glycocalyx as a resistance factor, Journal of Antimicrobial Chemotherapy, vol.26, issue.1, pp.1-5, 1990.
DOI : 10.1093/jac/26.1.1

M. Kawabata, M. Onda, and T. Mita, Effect of Aggregation of Amphotericin B on Lysophosphatidylcholine Micelles as Related to Its Complex Formation with Cholesterol or Ergosterol, Journal of Biochemistry, vol.129, issue.5, pp.725-732, 2001.
DOI : 10.1093/oxfordjournals.jbchem.a002912

E. M. Kojic and R. O. Darouiche, Candida Infections of Medical Devices, Clinical Microbiology Reviews, vol.17, issue.2, pp.255-267, 2004.
DOI : 10.1128/CMR.17.2.255-267.2004

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC387407

D. M. Kuhn, T. George, J. Chandra, P. K. Mukherjee, and M. A. Ghannoum, Antifungal Susceptibility of Candida Biofilms: Unique Efficacy of Amphotericin B Lipid Formulations and Echinocandins, Antimicrobial Agents and Chemotherapy, vol.46, issue.6, pp.1773-1780, 2002.
DOI : 10.1128/AAC.46.6.1773-1780.2002

D. M. Kuhn and M. A. Ghannoum, Candida biofilms: antifungal resistance and emerging therapeutic options, Curr. Opin. Investig. Drugs, vol.5, pp.186-197, 2004.

B. J. Kullberg and A. M. Lashof, Epidemiology of opportunistic invasive mycoses, Eur. J. Med. Res, vol.7, pp.183-191, 2002.

M. D. Lafleur, C. A. Kumamoto, and K. Lewis, Candida albicans Biofilms Produce Antifungal-Tolerant Persister Cells, Antimicrobial Agents and Chemotherapy, vol.50, issue.11, pp.3839-3846, 2006.
DOI : 10.1128/AAC.00684-06

T. T. Liu, R. E. Lee, K. S. Barker, R. E. Lee, L. Wei et al., Genome-Wide Expression Profiling of the Response to Azole, Polyene, Echinocandin, and Pyrimidine Antifungal Agents in Candida albicans, Antimicrobial Agents and Chemotherapy, vol.49, issue.6, pp.2226-2236, 2005.
DOI : 10.1128/AAC.49.6.2226-2236.2005

J. Maertens, M. Vrebos, and M. Boogaerts, Assessing risk factors for systemic fungal infections, European Journal of Cancer Care, vol.325, issue.1, pp.56-62, 2001.
DOI : 10.1056/NEJM199411173312001

T. F. Mah, B. Pitts, B. Pellock, G. C. Walker, P. S. Stewart et al., A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance, Nature, vol.426, issue.6964, pp.306-310, 2003.
DOI : 10.1038/nature02122

L. A. Mermel, B. M. Farr, R. J. Sherertz, I. I. Raad, N. O. Grady et al., Guidelines for the Management of Intravascular Catheter-Related Infections, Clinical Infectious Diseases, vol.32, issue.9, pp.1249-1272, 2001.
DOI : 10.1086/320001

T. Mio, M. Adachi-shimizu, Y. Tachibana, H. Tabuchi, S. B. Inoue et al., Cloning of the Candida albicans homolog of Saccharomyces cerevisiae GSC1/FKS1 and its involvement in beta-1,3-glucan synthesis., Journal of Bacteriology, vol.179, issue.13, pp.4096-4105, 1997.
DOI : 10.1128/jb.179.13.4096-4105.1997

E. Moreno-ruiz, G. Ortu, P. W. De-groot, F. Cottier, C. Loussert et al., The GPI-modified proteins Pga59 and Pga62 of Candida albicans are required for cell wall integrity, Microbiology, vol.155, issue.6, pp.2004-2020, 2009.
DOI : 10.1099/mic.0.028902-0

P. K. Mukherjee and J. Chandra, biofilm resistance, Drug Resistance Updates, vol.7, issue.4-5, pp.301-309, 2004.
DOI : 10.1016/j.drup.2004.09.002

P. K. Mukherjee, J. Chandra, D. M. Kuhn, and M. A. Ghannoum, Mechanism of Fluconazole Resistance in Candida albicans Biofilms: Phase-Specific Role of Efflux Pumps and Membrane Sterols, Infection and Immunity, vol.71, issue.8, pp.4333-4340, 2003.
DOI : 10.1128/IAI.71.8.4333-4340.2003

P. K. Mukherjee, G. Zhou, R. Munyon, and M. A. Ghannoum, biofilm: a well-designed protected environment, Medical Mycology, vol.43, issue.3, pp.191-208, 2005.
DOI : 10.1080/13693780500107554

H. Mulcahy, L. Charron-mazenod, and S. Lewenza, Extracellular DNA Chelates Cations and Induces Antibiotic Resistance in Pseudomonas aeruginosa Biofilms, PLoS Pathogens, vol.30, issue.3, p.1000213, 2008.
DOI : 10.1371/journal.ppat.1000213.s001

URL : http://doi.org/10.1371/journal.ppat.1000213

J. Nett, L. Lincoln, K. Marchillo, R. Massey, K. Holoyda et al., Putative Role of ??-1,3 Glucans in Candida albicans Biofilm Resistance, Antimicrobial Agents and Chemotherapy, vol.51, issue.2, pp.510-520, 2007.
DOI : 10.1128/AAC.01056-06

C. J. Nobile, D. R. Andes, J. E. Nett, F. J. Smith, Q. T. Yue et al., Critical Role of Bcr1-Dependent Adhesins in C. albicans Biofilm Formation In Vitro and In Vivo, PLoS Pathogens, vol.150, issue.7, p.63, 2006.
DOI : 10.1371/journal.ppat.0020063.sg001

C. J. Nobile and A. P. Mitchell, Regulation of Cell-Surface Genes and Biofilm Formation by the C. albicans Transcription Factor Bcr1p, Current Biology, vol.15, issue.12, pp.1150-1155, 2005.
DOI : 10.1016/j.cub.2005.05.047

C. J. Nobile, J. E. Nett, D. R. Andes, and A. P. Mitchell, Function of Candida albicans Adhesin Hwp1 in Biofilm Formation, Eukaryotic Cell, vol.5, issue.10, pp.1604-1610, 2006.
DOI : 10.1128/EC.00194-06

C. J. Nobile, H. A. Schneider, J. E. Nett, D. C. Sheppard, S. G. Filler et al., Complementary Adhesin Function in C. albicans Biofilm Formation, Current Biology, vol.18, issue.14, pp.1017-1024, 2008.
DOI : 10.1016/j.cub.2008.06.034

URL : http://doi.org/10.1016/j.cub.2008.06.034

P. G. Pappas, J. H. Rex, J. D. Sobel, S. G. Filler, W. E. Dismukes et al., Guidelines for Treatment of Candidiasis, Clinical Infectious Diseases, vol.38, issue.2, pp.161-189, 2004.
DOI : 10.1086/380796

G. Pardini, P. W. De-groot, A. T. Coste, M. Karababa, F. M. Klis et al., The CRH Family Coding for Cell Wall Glycosylphosphatidylinositol Proteins with a Predicted Transglycosidase Domain Affects Cell Wall Organization and Virulence of Candida albicans, Journal of Biological Chemistry, vol.281, issue.52, pp.40399-40411, 2006.
DOI : 10.1074/jbc.M606361200

E. Peeters, H. J. Nelis, and T. Coenye, Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates, Journal of Microbiological Methods, vol.72, issue.2, pp.157-165, 2008.
DOI : 10.1016/j.mimet.2007.11.010

H. Peltroche-llacsahuanga, S. Goyard, C. Enfert, S. K. Prill, and J. F. Ernst, Protein O-Mannosyltransferase Isoforms Regulate Biofilm Formation in Candida albicans, Antimicrobial Agents and Chemotherapy, vol.50, issue.10, pp.3488-3491, 2006.
DOI : 10.1128/AAC.00606-06

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1610076

M. A. Pfaller, R. N. Jones, G. V. Doern, A. C. Fluit, J. Verhoef et al., International surveillance of blood stream infections due to Candida species in the European SENTRY program: species distribution and antifungal susceptibility including the investigational triazole and echinocandin agents, Diagnostic Microbiology and Infectious Disease, vol.35, issue.1, pp.19-25, 1999.
DOI : 10.1016/S0732-8893(99)00046-2

G. Ramage, S. Bachmann, T. F. Patterson, B. L. Wickes, and J. L. Lopez-ribot, Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms, Journal of Antimicrobial Chemotherapy, vol.49, issue.6, pp.973-980, 2002.
DOI : 10.1093/jac/dkf049

G. Ramage, J. P. Martinez, and J. L. Lopez-ribot, biofilms on implanted biomaterials: a clinically significant problem, FEMS Yeast Research, vol.6, issue.7, pp.979-986, 2006.
DOI : 10.1111/j.1567-1364.2006.00117.x

G. Ramage, K. Vande-walle, B. L. Wickes, and J. L. Lopez-ribot, Biofilm Formation by Candida dubliniensis, Journal of Clinical Microbiology, vol.39, issue.9, pp.3234-3240, 2001.
DOI : 10.1128/JCM.39.9.3234-3240.2001

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC88324

G. Ramage, K. Vande-walle, B. L. Wickes, and J. L. Lopez-ribot, Standardized Method for In Vitro Antifungal Susceptibility Testing of Candida albicans Biofilms, Antimicrobial Agents and Chemotherapy, vol.45, issue.9, pp.2475-2479, 2001.
DOI : 10.1128/AAC.45.9.2475-2479.2001

. Lopez-ribot, In vitro pharmacodynamic properties of three antifungal agents against preformed Candida albicans biofilms determined by time-kill studies, Antimicrob. Agents Chemother, vol.46, pp.3634-3636, 2002.

J. H. Rex, T. J. Walsh, J. D. Sobel, S. G. Filler, P. G. Pappas et al., Practice Guidelines for the Treatment of Candidiasis, Clinical Infectious Diseases, vol.30, issue.4, pp.662-678, 2000.
DOI : 10.1086/313749

P. D. Rogers and K. S. Barker, Genome-Wide Expression Profile Analysis Reveals Coordinately Regulated Genes Associated with Stepwise Acquisition of Azole Resistance in Candida albicans Clinical Isolates, Antimicrobial Agents and Chemotherapy, vol.47, issue.4, pp.1220-1227, 2003.
DOI : 10.1128/AAC.47.4.1220-1227.2003

D. Romanini, G. Muller, and G. Pico, Use of amphotericin B as optical probe to study conformational changes and thermodynamic stability in human serum albumin, Journal of Protein Chemistry, vol.21, issue.8, pp.505-514, 2002.
DOI : 10.1023/A:1022421520834

Y. H. Samaranayake, J. Ye, J. Y. Yau, B. P. Cheung, and L. P. Samaranayake, In Vitro Method To Study Antifungal Perfusion in Candida Biofilms, Journal of Clinical Microbiology, vol.43, issue.2, pp.818-825, 2005.
DOI : 10.1128/JCM.43.2.818-825.2005

D. Sanglard and F. C. Odds, Resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequences, The Lancet Infectious Diseases, vol.2, issue.2, pp.73-85, 2002.
DOI : 10.1016/S1473-3099(02)00181-0

J. A. Shuford, M. S. Rouse, K. E. Piper, J. M. Steckelberg, and R. Patel, Biofilms in an Experimental Intravascular Catheter Infection Model, The Journal of Infectious Diseases, vol.194, issue.5, pp.710-713, 2006.
DOI : 10.1086/506452

I. Sinha, Y. M. Wang, R. Philp, C. R. Li, W. H. Yap et al., Cyclin-Dependent Kinases Control Septin Phosphorylation in Candida albicans Hyphal Development, Developmental Cell, vol.13, issue.3, pp.421-432, 2007.
DOI : 10.1016/j.devcel.2007.06.011

URL : http://doi.org/10.1016/j.devcel.2007.06.011

T. R. Sterling and W. G. Merz, Resistance to amphotericin B: emerging clinical and microbiological patterns, Drug Resistance Updates, vol.1, issue.3, pp.161-165, 1998.
DOI : 10.1016/S1368-7646(98)80034-4

P. S. Stewart and J. W. Costerton, Antibiotic resistance of bacteria in biofilms, The Lancet, vol.358, issue.9276, pp.135-138, 2001.
DOI : 10.1016/S0140-6736(01)05321-1

P. Sudbery, Morphogenesis of a Human Fungal Pathogen Requires Septin Phosphorylation, Developmental Cell, vol.13, issue.3, pp.315-316, 2007.
DOI : 10.1016/j.devcel.2007.08.009

C. Viscoli, C. Girmenia, A. Marinus, L. Collette, P. Martino et al., Candidemia in Cancer Patients: A Prospective, Multicenter Surveillance Study by the Invasive Fungal Infection Group (IFIG) of the European Organization for Research and Treatment of Cancer (EORTC), Clinical Infectious Diseases, vol.28, issue.5, pp.1071-1079, 1999.
DOI : 10.1086/514731

R. P. Wenzel, Nosocomial Candidemia: Risk Factors and Attributable Mortality, Clinical Infectious Diseases, vol.20, issue.6, pp.1531-1534, 1995.
DOI : 10.1093/clinids/20.6.1531

URL : http://cid.oxfordjournals.org/cgi/content/short/20/6/1531

H. Wisplinghoff, T. Bischoff, S. M. Tallent, H. Seifert, R. P. Wenzel et al., Nosocomial Bloodstream Infections in US Hospitals: Analysis of 24,179 Cases from a Prospective Nationwide Surveillance Study, Clinical Infectious Diseases, vol.39, issue.3, pp.309-317, 2004.
DOI : 10.1086/421946

X. Zhao, K. J. Daniels, S. H. Oh, C. B. Green, K. M. Yeater et al., Candida albicans Als3p is required for wild-type biofilm formation on silicone elastomer surfaces, Microbiology, vol.152, issue.8, pp.2287-2299, 2006.
DOI : 10.1099/mic.0.28959-0

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2583121