D. An and M. R. Parsek, The promise and peril of transcriptional profiling in biofilm communities, Current Opinion in Microbiology, vol.10, issue.3, pp.292-296, 2007.
DOI : 10.1016/j.mib.2007.05.011

M. B. Arnaud, M. C. Costanzo, M. S. Skrzypek, P. Shah, G. Binkley et al., Sequence resources at the Candida Genome Database, Nucleic Acids Research, vol.35, issue.Database, pp.452-456, 2007.
DOI : 10.1093/nar/gkl899

URL : http://doi.org/10.1093/nar/gkl899

C. Askew, A. Sellam, E. Epp, H. Hogues, A. Mullick et al., Transcriptional Regulation of Carbohydrate Metabolism in the Human Pathogen Candida albicans, PLoS Pathogens, vol.72, issue.3, p.1000612, 2009.
DOI : 10.1371/journal.ppat.1000612.s027

G. S. Baillie, D. , and L. J. , Role of dimorphism in the development of Candida albicans biofilms, Journal of Medical Microbiology, vol.48, issue.7, pp.671-679, 1999.
DOI : 10.1099/00222615-48-7-671

J. A. Benanti, S. K. Cheung, M. C. Brady, and D. P. Toczyski, A proteomic screen reveals SCFGrr1 targets that regulate the glycolytic???gluconeogenic switch, Nature Cell Biology, vol.18, issue.10, pp.1184-1191, 2007.
DOI : 10.1093/nar/18.10.3091

S. M. Bernardo, L. , and S. A. , Candida albicans SUR7 contributes to secretion, biofilm formation, and macrophage killing, BMC Microbiology, vol.10, issue.1, p.133, 2010.
DOI : 10.1186/1471-2180-10-133

URL : http://doi.org/10.1186/1471-2180-10-133

N. W. Blackstone and L. W. Buss, Treatment with 2,4-dinitrophenol mimics ontogenetic and phylogenetic changes in a hydractiniid hydroid., Proceedings of the National Academy of Sciences, vol.89, issue.9, pp.4057-4061, 1992.
DOI : 10.1073/pnas.89.9.4057

M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical Biochemistry, vol.72, issue.1-2, pp.248-254, 1976.
DOI : 10.1016/0003-2697(76)90527-3

D. H. Brown, . Jr, A. D. Giusani, X. Chen, and C. A. Kumamoto, Filamentous growth of Candida albicans in response to physical environmental cues and its regulation by the unique CZF1 gene, Molecular Microbiology, vol.89, issue.4, pp.651-662, 1999.
DOI : 10.1093/emboj/16.8.1982

J. M. Ten-cate, F. M. Klis, T. Pereira-cenci, W. Crielaard, and P. W. De-groot, Molecular and Cellular Mechanisms That Lead to Candida Biofilm Formation, Journal of Dental Research, vol.88, issue.2, pp.105-115, 2009.
DOI : 10.1177/0022034508329273

F. W. Chattaway, R. Bishop, M. R. Holmes, F. C. Odds, and A. J. Barlow, Enzyme Activities Associated with Carbohydrate Synthesis and Breakdown in the Yeast and Mycelial Forms of Candida albicans, Journal of General Microbiology, vol.75, issue.1, pp.97-109, 1973.
DOI : 10.1099/00221287-75-1-97

D. A. Davis, V. M. Bruno, L. Loza, S. G. Filler, and A. P. Mitchell, Candida albicans Mds3p, a conserved regulator of pH responses and virulence identified through insertional mutagenesis, Genetics, vol.162, pp.1573-1581, 2002.

R. Dirmeier, K. M. Brien, M. Engle, A. Dodd, E. Spears et al., Exposure of Yeast Cells to Anoxia Induces Transient Oxidative Stress: IMPLICATIONS FOR THE INDUCTION OF HYPOXIC GENES, Journal of Biological Chemistry, vol.277, issue.38, pp.34773-34784, 2002.
DOI : 10.1074/jbc.M203902200

R. M. Donlan and J. W. And-costerton, Biofilms: Survival Mechanisms of Clinically Relevant Microorganisms, Clinical Microbiology Reviews, vol.15, issue.2, pp.167-193, 2002.
DOI : 10.1128/CMR.15.2.167-193.2002

L. J. Douglas, Candida biofilms and their role in infection, Trends in Microbiology, vol.11, issue.1, pp.30-36, 2003.
DOI : 10.1016/S0966-842X(02)00002-1

N. Dunkel, T. T. Liu, K. S. Barker, R. Homayouni, J. Morschhauser et al., A Gain-of-Function Mutation in the Transcription Factor Upc2p Causes Upregulation of Ergosterol Biosynthesis Genes and Increased Fluconazole Resistance in a Clinical Candida albicans Isolate, Eukaryotic Cell, vol.7, issue.7, pp.1180-1190, 2008.
DOI : 10.1128/EC.00103-08

T. Emri, Z. Molnar, T. Pusztahelyi, and I. Pocsi, Physiological and morphological changes in autolyzingAspergillus nidulans cultures, Folia Microbiologica, vol.123, issue.3, pp.277-284, 2004.
DOI : 10.1007/BF02931043

J. F. Ernst and D. Tielker, Responses to hypoxia in fungal pathogens, Cellular Microbiology, vol.3, issue.Pt 3, pp.183-190, 2009.
DOI : 10.1111/j.1462-5822.2008.01259.x

J. Fan, M. Whiteway, and S. H. Shen, impairs intracellular glycerol accumulation-mediated salt-tolerance, FEMS Microbiology Letters, vol.245, issue.1, pp.107-116, 2005.
DOI : 10.1016/j.femsle.2005.02.031

S. G. Filler and B. J. Kuhlberg, Deep-seated candidal infections, pp.341-348, 2002.

A. Firon, S. Aubert, I. Iraqui, S. Guadagnini, S. Goyard et al., The SUN41 and SUN42 genes are essential for cell separation in Candida albicans, Molecular Microbiology, vol.181, issue.5, pp.1256-1275, 2007.
DOI : 10.1111/j.1365-2958.2005.04507.x

S. Garcia-sanchez, S. Aubert, I. Iraqui, G. Janbon, J. M. Ghigo et al., Candida albicans Biofilms: a Developmental State Associated With Specific and Stable Gene Expression Patterns, Eukaryotic Cell, vol.3, issue.2, pp.536-545, 2004.
DOI : 10.1128/EC.3.2.536-545.2004

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC387656

A. M. Gillum, E. Y. Tsay, and D. R. Kirsch, Isolation of the Candida albicans gene for orotidine-5?-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations, MGG Molecular & General Genetics, vol.180, issue.1, pp.179-182, 1984.
DOI : 10.1007/BF00328721

S. Gola, R. Martin, A. Walther, A. Dunkler, W. et al., : rapid and efficient gene targeting using 100 bp of flanking homology region, Yeast, vol.181, issue.16, pp.1339-1347, 2003.
DOI : 10.1002/yea.1044

S. Goyard, P. Knechtle, M. Chauvel, A. Mallet, M. C. Prevost et al., The Yak1 Kinase Is Involved in the Initiation and Maintenance of Hyphal Growth in Candida albicans, Molecular Biology of the Cell, vol.19, issue.5, pp.2251-2266, 2008.
DOI : 10.1091/mbc.E07-09-0960

B. L. Granger, M. L. Flenniken, D. A. Davis, A. P. Mitchell, and J. E. Cutler, Yeast wall protein 1 of Candida albicans, Microbiology, vol.151, issue.5, pp.1631-1644, 2005.
DOI : 10.1099/mic.0.27663-0

E. Hiller, S. Heine, H. Brunner, and S. Rupp, Candida albicans Sun41p, a Putative Glycosidase, Is Involved in Morphogenesis, Cell Wall Biogenesis, and Biofilm Formation, Eukaryotic Cell, vol.6, issue.11, pp.2056-2065, 2007.
DOI : 10.1128/EC.00285-07

S. J. Hoot, B. G. Oliver, and T. C. White, Candida albicans UPC2 is transcriptionally induced in response to antifungal drugs and anaerobicity through Upc2p-dependent and -independent mechanisms, Microbiology, vol.154, issue.9, pp.2748-2756, 2008.
DOI : 10.1099/mic.0.2008/017475-0

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2577385

F. Hynne, S. Dano, and P. G. Sorensen, Full-scale model of glycolysis in Saccharomyces cerevisiae, Biophysical Chemistry, vol.94, issue.1-2, pp.121-163, 2001.
DOI : 10.1016/S0301-4622(01)00229-0

L. H. Kimura and N. N. Pearsall, Relationship between germination of Candida albicans and increased adherence to human buccal epithelial cells, Infect Immun, vol.28, pp.464-468, 1980.

A. Kitanovic, T. Walther, M. O. Loret, J. Holzwarth, I. Kitanovic et al., is dependent on the glucose concentration in the medium, FEMS Yeast Research, vol.9, issue.4, pp.535-551, 2009.
DOI : 10.1111/j.1567-1364.2009.00505.x

S. S. Korshunov, V. P. Skulachev, and A. A. Starkov, High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria, FEBS Letters, vol.94, issue.1, pp.15-18, 1997.
DOI : 10.1016/S0014-5793(97)01159-9

T. L. Kress, N. J. Krogan, G. , and C. , A Single SR-like Protein, Npl3, Promotes Pre-mRNA Splicing in Budding Yeast, Molecular Cell, vol.32, issue.5, pp.727-734, 2008.
DOI : 10.1016/j.molcel.2008.11.013

C. A. Kumamoto, A contact-activated kinase signals Candida albicans invasive growth and biofilm development, Proceedings of the National Academy of Sciences, vol.65, issue.2, pp.5576-5581, 2005.
DOI : 10.1111/j.1574-6968.2002.tb11330.x

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC556227

G. A. Land, W. C. Mcdonald, R. L. Stjernholm, and L. Friedman, Factors affecting filamentation in Candida albicans: changes in respiratory activity of Candida albicans during filamentation, Infect Immun, vol.12, pp.119-127, 1975.

W. C. Lee, D. Zabetakis, and T. Melese, NSR1 is required for pre-rRNA processing and for the proper maintenance of steady-state levels of ribosomal subunits., Molecular and Cellular Biology, vol.12, issue.9, pp.3865-3871, 1992.
DOI : 10.1128/MCB.12.9.3865

F. Li and S. P. Palecek, Distinct domains of the Candida albicans adhesin Eap1p mediate cell-cell and cell-substrate interactions, Microbiology, vol.154, issue.4, pp.1193-1203, 2008.
DOI : 10.1099/mic.0.2007/013789-0

M. C. Lorenz, J. A. Bender, and G. R. Fink, Transcriptional Response of Candida albicans upon Internalization by Macrophages, Eukaryotic Cell, vol.3, issue.5, pp.1076-1087, 2004.
DOI : 10.1128/EC.3.5.1076-1087.2004

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC522606

L. A. Mermel, B. M. Farr, R. J. Sherertz, I. I. Raad, N. O-'grady et al., Guidelines for the Management of Intravascular Catheter-Related Infections, Clinical Infectious Diseases, vol.32, issue.9, pp.1249-1272, 2001.
DOI : 10.1086/320001

E. Moreno-ruiz, G. Ortu, P. W. De-groot, F. Cottier, C. Loussert et al., The GPI-modified proteins Pga59 and Pga62 of Candida albicans are required for cell wall integrity, Microbiology, vol.155, issue.6, pp.2004-2020, 2009.
DOI : 10.1099/mic.0.028902-0

S. M. Mulhern, M. E. Logue, and G. Butler, Candida albicans Transcription Factor Ace2 Regulates Metabolism and Is Required for Filamentation in Hypoxic Conditions, Eukaryotic Cell, vol.5, issue.12, pp.2001-2013, 2006.
DOI : 10.1128/EC.00155-06

A. M. Murad, P. R. Lee, I. D. Broadbent, C. J. Barelle, and A. J. Brown, CIp10, an efficient and convenient integrating vector forCandida albicans, Yeast, vol.48, issue.4, pp.325-327, 2000.
DOI : 10.1002/1097-0061(20000315)16:4<325::AID-YEA538>3.0.CO;2-#

L. A. Murillo, G. Newport, C. Y. Lan, S. Habelitz, J. Dungan et al., Genome-Wide Transcription Profiling of the Early Phase of Biofilm Formation by Candida albicans, Eukaryotic Cell, vol.4, issue.9, pp.1562-1573, 2005.
DOI : 10.1128/EC.4.9.1562-1573.2005

O. Nasution, K. Srinivasa, M. Kim, Y. J. Kim, W. Kim et al., Hydrogen Peroxide Induces Hyphal Differentiation in Candida albicans, Eukaryotic Cell, vol.7, issue.11, pp.2008-2011, 2008.
DOI : 10.1128/EC.00105-08

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2583538

J. Nett, L. Lincoln, K. Marchillo, R. Massey, K. Holoyda et al., Putative Role of ??-1,3 Glucans in Candida albicans Biofilm Resistance, Antimicrobial Agents and Chemotherapy, vol.51, issue.2, pp.510-520, 2007.
DOI : 10.1128/AAC.01056-06

J. E. Nett, K. Crawford, K. Marchillo, and D. R. Andes, Role of Fks1p and Matrix Glucan in Candida albicans Biofilm Resistance to an Echinocandin, Pyrimidine, and Polyene, Antimicrobial Agents and Chemotherapy, vol.54, issue.8, pp.3505-3508, 2010.
DOI : 10.1128/AAC.00227-10

J. E. Nett, H. Sanchez, M. T. Cain, and D. R. Andes, Biofilm Resistance Due to Drug???Sequestering Matrix Glucan, The Journal of Infectious Diseases, vol.202, issue.1, pp.171-175, 2010.
DOI : 10.1086/651200

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2880631

W. J. Nickerson, Symposium on biochemical bases of morphogenesis in Fungi. IV. Molecular bases of form in yeasts, Bacteriol Rev, vol.27, pp.305-324, 1963.

K. Nishi, C. S. Park, A. E. Pepper, G. Eichinger, M. A. Innis et al., The GCR1 requirement for yeast glycolytic gene expression is suppressed by dominant mutations in the SGC1 gene, which encodes a novel basic-helix-loop-helix protein., Molecular and Cellular Biology, vol.15, issue.5, pp.2646-2653, 1995.
DOI : 10.1128/MCB.15.5.2646

C. J. Nobile and A. P. Mitchell, Regulation of Cell-Surface Genes and Biofilm Formation by the C. albicans Transcription Factor Bcr1p, Current Biology, vol.15, issue.12, pp.1150-1155, 2005.
DOI : 10.1016/j.cub.2005.05.047

C. J. Nobile and A. P. Mitchell, Genetics and genomics of Candida albicans biofilm formation, Cellular Microbiology, vol.46, issue.9, pp.1382-1391, 2006.
DOI : 10.1128/EC.4.10.1654-1661.2005

C. J. Nobile, D. R. Andes, J. E. Nett, F. J. Smith, F. Yue et al., Critical Role of Bcr1-Dependent Adhesins in C. albicans Biofilm Formation In Vitro and In Vivo, PLoS Pathogens, vol.150, issue.7, p.63, 2006.
DOI : 10.1371/journal.ppat.0020063.sg001

C. J. Nobile, H. A. Schneider, J. E. Nett, D. C. Sheppard, S. G. Filler et al., Complementary Adhesin Function in C. albicans Biofilm Formation, Current Biology, vol.18, issue.14, pp.1017-1024, 2008.
DOI : 10.1016/j.cub.2008.06.034

URL : http://doi.org/10.1016/j.cub.2008.06.034

C. J. Nobile, J. E. Nett, A. D. Hernday, O. R. Homann, J. S. Deneault et al., Biofilm Matrix Regulation by Candida albicans Zap1, PLoS Biology, vol.281, issue.6, p.1000133, 2009.
DOI : 10.1371/journal.pbio.1000133.s007

URL : http://doi.org/10.1371/journal.pbio.1000133

C. T. Norice, F. J. Smith, N. S. Jr, S. G. Filler, and A. P. Mitchell, Requirement for Candida albicans Sun41 in Biofilm Formation and Virulence, Eukaryotic Cell, vol.6, issue.11, pp.2046-2055, 2007.
DOI : 10.1128/EC.00314-07

C. Nouet, M. Bourens, O. Hlavacek, S. Marsy, C. Lemaire et al., Rmd9p Controls the Processing/Stability of Mitochondrial mRNAs and Its Overexpression Compensates for a Partial Deficiency of Oxa1p in Saccharomyces cerevisiae, Genetics, vol.175, issue.3, pp.1105-1115, 2007.
DOI : 10.1534/genetics.106.063883

URL : https://hal.archives-ouvertes.fr/hal-00167510

T. Nowak, Structural changes at the active site of pyruvate kinase during activation and catalysis, J Biol Chem, vol.253, pp.1998-2004, 1978.

S. K. Palanisamy, M. A. Ramirez, M. Lorenz, L. , and S. A. , Candida albicans PEP12 Is Required for Biofilm Integrity and In Vivo Virulence, Eukaryotic Cell, vol.9, issue.2, pp.266-277, 2010.
DOI : 10.1128/EC.00295-09

J. H. Park, L. Aravind, E. C. Wolff, J. Kaevel, Y. S. Kim et al., Molecular cloning, expression, and structural prediction of deoxyhypusine hydroxylase: A HEAT-repeat-containing metalloenzyme, Proceedings of the National Academy of Sciences, vol.153, issue.1, pp.51-56, 2006.
DOI : 10.1111/j.1432-0436.2004.07202004.x

A. J. Phillips, I. Sudbery, R. , and M. , Apoptosis induced by environmental stresses and amphotericin B in Candida albicans, Proceedings of the National Academy of Sciences, vol.6, issue.4, pp.14327-14332, 2003.
DOI : 10.1016/S1097-2765(02)00501-4

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC283591

G. Ramage, S. P. Saville, D. P. Thomas, and J. L. Lopez-ribot, Candida Biofilms: an Update, Eukaryotic Cell, vol.4, issue.4, pp.633-638, 2005.
DOI : 10.1128/EC.4.4.633-638.2005

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1087806

G. Ramage, E. Mowat, B. Jones, C. Williams, and J. Lopez-ribot, Our Current Understanding of Fungal Biofilms, Critical Reviews in Microbiology, vol.100, issue.2, pp.340-355, 2009.
DOI : 10.1099/mic.0.27763-0

O. Reuss, A. Vik, R. Kolter, and J. Morschhauser, The SAT1 flipper, an optimized tool for gene disruption in Candida albicans, Gene, vol.341, pp.119-127, 2004.
DOI : 10.1016/j.gene.2004.06.021

J. H. Rex, T. J. Walsh, J. D. Sobel, S. G. Filler, P. G. Pappas et al., Practice Guidelines for the Treatment of Candidiasis, Clinical Infectious Diseases, vol.30, issue.4, pp.662-678, 2000.
DOI : 10.1086/313749

M. L. Richard, C. J. Nobile, V. M. Bruno, and A. P. Mitchell, Candida albicans Biofilm-Defective Mutants, Eukaryotic Cell, vol.4, issue.8, pp.1493-1502, 2005.
DOI : 10.1128/EC.4.8.1493-1502.2005

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1214533

T. Rossignol, C. Ding, A. Guida, C. Enfert, D. G. Higgins et al., Correlation between Biofilm Formation and the Hypoxic Response in Candida parapsilosis, Eukaryotic Cell, vol.8, issue.4, pp.550-559, 2009.
DOI : 10.1128/EC.00350-08

J. M. Schierholz and J. Beuth, Implant infections: a haven for opportunistic bacteria, Journal of Hospital Infection, vol.49, issue.2, pp.87-93, 2001.
DOI : 10.1053/jhin.2001.1052

A. Sellam, T. Niemi, K. Mcinnerney, S. Brumfield, A. Nantel et al., A Candida albicans early stage biofilm detachment event in rich medium, BMC Microbiology, vol.9, issue.1, p.25, 2009.
DOI : 10.1186/1471-2180-9-25

E. R. Setiadi, T. Doedt, F. Cottier, C. Noffz, E. et al., Transcriptional Response of Candida albicans to Hypoxia: Linkage of Oxygen Sensing and Efg1p-regulatory Networks, Journal of Molecular Biology, vol.361, issue.3, pp.399-411, 2006.
DOI : 10.1016/j.jmb.2006.06.040

Q. M. Shi, Y. M. Wang, X. D. Zheng, R. T. Lee, W. et al., Critical Role of DNA Checkpoints in Mediating Genotoxic-Stress-induced Filamentous Growth in Candida albicans, Molecular Biology of the Cell, vol.18, issue.3, pp.815-826, 2007.
DOI : 10.1091/mbc.E06-05-0442

A. Da-silva-dantas, M. J. Patterson, D. A. Smith, D. M. Maccallum, L. P. Erwig et al., Thioredoxin Regulates Multiple Hydrogen Peroxide-Induced Signaling Pathways in Candida albicans, Molecular and Cellular Biology, vol.30, issue.19, pp.4550-4563, 2010.
DOI : 10.1128/MCB.00313-10

A. Sonneborn, B. Tebarth, E. , and J. F. , Control of white-opaque phenotypic switching in Candida albicans by the Efg1p morphogenetic regulator, Infect Immun, vol.67, pp.4655-4660, 1999.

C. Stichternoth, E. , and J. F. , Hypoxic Adaptation by Efg1 Regulates Biofilm Formation by Candida albicans, Applied and Environmental Microbiology, vol.75, issue.11, pp.3663-3672, 2009.
DOI : 10.1128/AEM.00098-09

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2687269

J. M. Synnott, A. Guida, S. Mulhern-haughey, D. G. Higgins, and G. Butler, Regulation of the Hypoxic Response in Candida albicans, Eukaryotic Cell, vol.9, issue.11, pp.1734-1746, 2010.
DOI : 10.1128/EC.00159-10

G. Vediyappan, T. Rossignol, and C. Enfert, Interaction of Candida albicans Biofilms with Antifungals: Transcriptional Response and Binding of Antifungals to Beta-Glucans, Antimicrobial Agents and Chemotherapy, vol.54, issue.5, pp.2096-2111, 2010.
DOI : 10.1128/AAC.01638-09

V. F. Vellucci, S. E. Gygax, and M. K. Hostetter, Involvement of Candida albicans pyruvate dehydrogenase complex protein X (Pdx1) in filamentation, Fungal Genetics and Biology, vol.44, issue.10, pp.979-990, 2007.
DOI : 10.1016/j.fgb.2006.12.003

A. Walther, W. , and J. , An improved transformation protocol for the human fungal pathogen Candida albicans, Current Genetics, vol.42, issue.6, pp.339-343, 2003.
DOI : 10.1007/s00294-002-0349-0

A. Walther, W. , and J. , PCR-based gene targeting in Candida albicans, Nature Protocols, vol.179, issue.9, pp.1414-1421, 2008.
DOI : 10.1038/nprot.2008.137

R. B. Wilson, D. Davis, and A. P. Mitchell, Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions, J Bacteriol, vol.181, pp.1868-1874, 1999.