F. Odds, C. Webster, P. Mayuranathan, and P. Simmons, concentrations in the vagina and their association with signs and symptoms of vaginal candidosis, Medical Mycology, vol.26, issue.5, pp.277-283, 1988.
DOI : 10.1080/02681218880000391

R. Calderone, Taxonomy and biology of Candida, pp.307-332, 2002.

A. Mavor, S. Thewes, and B. Hube, Systemic Fungal Infections Caused by Candida Species: Epidemiology, Infection Process and Virulence Attributes, Current Drug Targets, vol.6, issue.8, pp.863-874, 2005.
DOI : 10.2174/138945005774912735

M. Pfaller and D. Diekema, Epidemiology of Invasive Candidiasis: a Persistent Public Health Problem, Clinical Microbiology Reviews, vol.20, issue.1, pp.133-163, 2007.
DOI : 10.1128/CMR.00029-06

A. Hernday, S. Noble, Q. Mitrovich, and A. Johnson, Genetics and Molecular Biology in Candida albicans, Methods Enzymol, vol.470, pp.737-758, 2010.
DOI : 10.1016/S0076-6879(10)70031-8

S. Noble and A. Johnson, , a Diploid Human Fungal Pathogen, Annual Review of Genetics, vol.41, issue.1, pp.193-211, 2007.
DOI : 10.1146/annurev.genet.41.042007.170146

D. Davis, V. Bruno, L. Loza, S. Filler, and A. Mitchell, Candida albicans Mds3p, a conserved regulator of pH responses and virulence identified through insertional mutagenesis, Genetics, vol.162, pp.1573-1581, 2002.

T. Roemer, B. Jiang, J. Davison, T. Ketela, and K. Veillette, Large-scale essential gene identification in Candida albicans and applications to antifungal drug discovery, Molecular Microbiology, vol.285, issue.1, pp.167-181, 2003.
DOI : 10.1046/j.1365-2958.2003.03697.x

M. Uhl, M. Biery, N. Craig, and A. Johnson, Haploinsufficiency-based large-scale forward genetic analysis of filamentous growth in the diploid human fungal pathogen C.albicans, The EMBO Journal, vol.22, issue.11, pp.2668-2678, 2003.
DOI : 10.1093/emboj/cdg256

C. Nobile and A. Mitchell, Regulation of Cell-Surface Genes and Biofilm Formation by the C. albicans Transcription Factor Bcr1p, Current Biology, vol.15, issue.12, pp.1150-1155, 2005.
DOI : 10.1016/j.cub.2005.05.047

D. Xu, B. Jiang, T. Ketela, S. Lemieux, and K. Veillette, Genome-Wide Fitness Test and Mechanism-of-Action Studies of Inhibitory Compounds in Candida albicans, PLoS Pathogens, vol.17, issue.6, p.92, 2007.
DOI : 10.1371/journal.ppat.0030092.st002

O. Homann, D. J. Noble, S. Johnson, and A. , A Phenotypic Profile of the Candida albicans Regulatory Network, PLoS Genetics, vol.46, issue.12, p.1000783, 2009.
DOI : 10.1371/journal.pgen.1000783.s008

J. Becker, S. Kauffman, M. Hauser, L. Huang, and M. Lin, Pathway analysis of Candida albicans survival and virulence determinants in a murine infection model, Proceedings of the National Academy of Sciences, vol.1, issue.1, pp.22044-22049, 2010.
DOI : 10.1371/journal.pgen.0010036

J. Blankenship, S. Fanning, J. Hamaker, and A. Mitchell, An Extensive Circuitry for Cell Wall Regulation in Candida albicans, PLoS Pathogens, vol.418, issue.2, p.1000752, 2010.
DOI : 10.1371/journal.ppat.1000752.s004

E. Epp, A. Walther, G. Lepine, Z. Leon, and A. Mullick, that reveals the Arp2/3 complex is required for hyphal formation, but not endocytosis, Molecular Microbiology, vol.66, issue.5, pp.1182-1198, 2010.
DOI : 10.1111/j.1365-2958.2009.07038.x

S. Noble, S. French, L. Kohn, V. Chen, and A. Johnson, Systematic screens of a Candida albicans homozygous deletion library decouple morphogenetic switching and pathogenicity, Nature Genetics, vol.25, issue.7, pp.590-598, 2010.
DOI : 10.1038/ng.605

J. Oh, E. Fung, U. Schlecht, R. Davis, and G. Giaever, Gene Annotation and Drug Target Discovery in Candida albicans with a Tagged Transposon Mutant Collection, PLoS Pathogens, vol.4, issue.10, p.1001140, 2010.
DOI : 10.1371/journal.ppat.1001140.s020

N. Bharucha, Y. Chabrier-rosello, T. Xu, C. Johnson, and S. Sobczynski, A Large-Scale Complex Haploinsufficiency-Based Genetic Interaction Screen in Candida albicans: Analysis of the RAM Network during Morphogenesis, PLoS Genetics, vol.16, issue.4, p.1002058, 2011.
DOI : 10.1371/journal.pgen.1002058.s002

P. Vandeputte, S. Pradervand, F. Ischer, A. Coste, and S. Ferrari, Identification and Functional Characterization of Rca1, a Transcription Factor Involved in both Antifungal Susceptibility and Host Response in Candida albicans, Eukaryotic Cell, vol.11, issue.7, pp.916-931, 2012.
DOI : 10.1128/EC.00134-12

L. Stevenson, B. Kennedy, and E. Harlow, A large-scale overexpression screen in Saccharomyces cerevisiae identifies previously uncharacterized cell cycle genes, Proceedings of the National Academy of Sciences, vol.403, issue.6770, pp.3946-3951, 2001.
DOI : 10.1038/35001009

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC31159

G. Chua, Q. Morris, R. Sopko, M. Robinson, and O. Ryan, Identifying transcription factor functions and targets by phenotypic activation, Proceedings of the National Academy of Sciences, vol.118, issue.1, pp.12045-12050, 2006.
DOI : 10.1016/j.cell.2004.06.013

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1567694

R. Sopko, D. Huang, N. Preston, G. Chua, and B. Papp, Mapping Pathways and Phenotypes by Systematic Gene Overexpression, Molecular Cell, vol.21, issue.3, pp.319-330, 2006.
DOI : 10.1016/j.molcel.2005.12.011

URL : http://doi.org/10.1016/j.molcel.2005.12.011

R. Jin, C. Dobry, P. Mccown, and A. Kumar, Large-Scale Analysis of Yeast Filamentous Growth by Systematic Gene Disruption and Overexpression, Molecular Biology of the Cell, vol.19, issue.1, pp.284-296, 2008.
DOI : 10.1091/mbc.E07-05-0519

L. Magtanong, C. Ho, S. Barker, W. Jiao, and A. Baryshnikova, Dosage suppression genetic interaction networks enhance functional wiring diagrams of the cell, Nature Biotechnology, vol.136, issue.6, pp.505-511, 2011.
DOI : 10.1007/BF02986080

G. Prelich, Gene Overexpression: Uses, Mechanisms, and Interpretation, Genetics, vol.190, issue.3, pp.841-854, 2012.
DOI : 10.1534/genetics.111.136911

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3296252

D. Gelperin, M. White, M. Wilkinson, Y. Kon, and L. Kung, Biochemical and genetic analysis of the yeast proteome with a movable ORF collection, Genes & Development, vol.19, issue.23, pp.2816-2826, 2005.
DOI : 10.1101/gad.1362105

Y. Fu, G. Luo, B. Spellberg, J. Edwards, J. Ibrahim et al., Gene Overexpression/Suppression Analysis of Candidate Virulence Factors of Candida albicans, Eukaryotic Cell, vol.7, issue.3, pp.483-492, 2008.
DOI : 10.1128/EC.00445-07

N. Sahni, S. Yi, K. Daniels, G. Huang, and T. Srikantha, Tec1 Mediates the Pheromone Response of the White Phenotype of Candida albicans: Insights into the Evolution of New Signal Transduction Pathways, PLoS Biology, vol.15, issue.6, p.1000363, 2010.
DOI : 10.1371/journal.pbio.1000363.s011

H. Du, G. Guan, J. Xie, Y. Sun, and Y. Tong, Roles of Candida albicans Gat2, a GATA-Type Zinc Finger Transcription Factor, in Biofilm Formation, Filamentous Growth and Virulence, PLoS ONE, vol.20, issue.1, p.29707, 2012.
DOI : 10.1371/journal.pone.0029707.s001

C. Nobile and A. Mitchell, Genetics and genomics of Candida albicans biofilm formation, Cellular Microbiology, vol.46, issue.9, pp.1382-1391, 2006.
DOI : 10.1128/EC.4.10.1654-1661.2005

C. Nobile, J. Nett, D. Andes, and A. Mitchell, Function of Candida albicans Adhesin Hwp1 in Biofilm Formation, Eukaryotic Cell, vol.5, issue.10, pp.1604-1610, 2006.
DOI : 10.1128/EC.00194-06

C. Nobile, J. Nett, A. Hernday, O. Homann, and J. Deneault, Biofilm Matrix Regulation by Candida albicans Zap1, PLoS Biology, vol.281, issue.6, p.1000133, 2009.
DOI : 10.1371/journal.pbio.1000133.s007

URL : http://doi.org/10.1371/journal.pbio.1000133

C. Nobile, E. Fox, J. Nett, T. Sorrells, and Q. Mitrovich, A Recently Evolved Transcriptional Network Controls Biofilm Development in Candida albicans, Cell, vol.148, issue.1-2, pp.126-138, 2012.
DOI : 10.1016/j.cell.2011.10.048

A. Walhout, G. Temple, M. Brasch, J. Hartley, and M. Lorson, [34] GATEWAY recombinational cloning: Application to the cloning of large numbers of open reading frames or ORFeomes, Methods Enzymol, vol.328, pp.575-592, 2000.
DOI : 10.1016/S0076-6879(00)28419-X

A. Murad, P. Lee, I. Broadbent, C. Barelle, and A. Brown, CIp10, an efficient and convenient integrating vector forCandida albicans, Yeast, vol.48, issue.4, pp.325-327, 2000.
DOI : 10.1002/1097-0061(20000315)16:4<325::AID-YEA538>3.0.CO;2-#

C. Leuker, A. Sonneborn, S. Delbruck, and J. Ernst, Sequence and promoter regulation of the PCK1 gene encoding phosphoenolpyruvate carboxykinase of the fungal pathogen Candidaalbicans, Gene, vol.192, issue.2, pp.235-240, 1997.
DOI : 10.1016/S0378-1119(97)00069-3

G. Rigaut, A. Shevchenko, B. Rutz, M. Wilm, and M. Mann, A generic protein purification method for protein complex characterization and proteome exploration, Nature Biotechnology, vol.17, issue.10, pp.1030-1032, 1999.
DOI : 10.1038/13732

Y. Park and J. Morschhauser, Tetracycline-Inducible Gene Expression and Gene Deletion in Candida albicans, Eukaryotic Cell, vol.4, issue.8, pp.1328-1342, 2005.
DOI : 10.1128/EC.4.8.1328-1342.2005

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1214208

M. Delgado, M. Gil, and D. Gozalbo, Candida albicans TDH3 gene promotes secretion of internal invertase when expressed inSaccharomyces cerevisiae as a glyceraldehyde-3-phosphate dehydrogenase-invertase fusion protein, Yeast, vol.33, issue.8, pp.713-722, 2003.
DOI : 10.1002/yea.993

B. Enjalbert, A. Rachini, G. Vediyappan, D. Pietrella, and R. Spaccapelo, A Multifunctional, Synthetic Gaussia princeps Luciferase Reporter for Live Imaging of Candida albicans Infections, Infection and Immunity, vol.77, issue.11, pp.4847-4858, 2009.
DOI : 10.1128/IAI.00223-09

Y. Schaub, A. Dunkler, A. Walther, and J. Wendland, New pFA-cassettes for PCR-based gene manipulation inCandida albicans, Journal of Basic Microbiology, vol.36, issue.5, pp.416-429, 2006.
DOI : 10.1002/jobm.200510133

P. Carlisle, M. Banerjee, A. Lazzell, C. Monteagudo, and J. Lopez-ribot, Expression levels of a filament-specific transcriptional regulator are sufficient to determine Candida albicans morphology and virulence, Proceedings of the National Academy of Sciences, vol.118, issue.13, pp.599-604, 2009.
DOI : 10.1242/jcs.02414

H. Huang, D. Harcus, and M. Whiteway, Transcript profiling of a MAP kinase pathway in C. albicans, Microbiological Research, vol.163, issue.4, pp.380-393, 2008.
DOI : 10.1016/j.micres.2008.03.001

R. Shapiro, N. Robbins, and L. Cowen, Regulatory Circuitry Governing Fungal Development, Drug Resistance, and Disease, Microbiology and Molecular Biology Reviews, vol.75, issue.2, pp.213-267, 2011.
DOI : 10.1128/MMBR.00045-10

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3122626

P. Sudbery, N. Gow, and J. Berman, The distinct morphogenic states of Candida albicans, Trends in Microbiology, vol.12, issue.7, pp.317-324, 2004.
DOI : 10.1016/j.tim.2004.05.008

P. Sudbery, Growth of Candida albicans hyphae, Nature Reviews Microbiology, vol.5, issue.10, pp.737-748, 2011.
DOI : 10.1038/nrmicro2636

E. Bensen, S. Filler, and J. Berman, A Forkhead Transcription Factor Is Important for True Hyphal as well as Yeast Morphogenesis in Candida albicans, Eukaryotic Cell, vol.1, issue.5, pp.787-798, 2002.
DOI : 10.1128/EC.1.5.787-798.2002

I. Sinha, Y. Wang, R. Philp, C. Li, and W. Yap, Cyclin-Dependent Kinases Control Septin Phosphorylation in Candida albicans Hyphal Development, Developmental Cell, vol.13, issue.3, pp.421-432, 2007.
DOI : 10.1016/j.devcel.2007.06.011

URL : http://doi.org/10.1016/j.devcel.2007.06.011

G. Chamilos, C. Nobile, V. Bruno, R. Lewis, and A. Mitchell, Mutant Fly Models, The Journal of Infectious Diseases, vol.200, issue.1, pp.152-157, 2009.
DOI : 10.1086/599363

R. Pukkila-worley, A. Peleg, E. Tampakakis, and E. Mylonakis, Candida albicans Hyphal Formation and Virulence Assessed Using a Caenorhabditis elegans Infection Model, Eukaryotic Cell, vol.8, issue.11, pp.1750-1758, 2009.
DOI : 10.1128/EC.00163-09

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2772404

W. Song, H. Wang, and J. Chen, Candida albicans Sfl2, a temperature-induced transcriptional regulator, is required for virulence in a murine gastrointestinal infection model, FEMS Yeast Research, vol.11, issue.2, pp.209-222, 2011.
DOI : 10.1111/j.1567-1364.2010.00710.x

R. Khalaf and R. Zitomer, The DNA binding protein Rfg1 is a repressor of filamentation in Candida albicans, Genetics, vol.157, pp.1503-1512, 2001.

D. Kadosh and A. Johnson, Induction of the Candida albicans Filamentous Growth Program by Relief of Transcriptional Repression: A Genome-wide Analysis, Molecular Biology of the Cell, vol.16, issue.6, pp.2903-2912, 2005.
DOI : 10.1091/mbc.E05-01-0073

J. Bauer and J. Wendland, Candida albicans Sfl1 Suppresses Flocculation and Filamentation, Eukaryotic Cell, vol.6, issue.10, pp.1736-1744, 2007.
DOI : 10.1128/EC.00236-07

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2043394

Y. Li, C. Su, X. Mao, F. Cao, and C. J. , Roles of Candida albicans Sfl1 in Hyphal Development, Eukaryotic Cell, vol.6, issue.11, pp.2112-2121, 2007.
DOI : 10.1128/EC.00199-07

I. Cleary, P. Mulabagal, S. Reinhard, N. Yadev, and C. Murdoch, Pseudohyphal Regulation by the Transcription Factor Rfg1p in Candida albicans, Eukaryotic Cell, vol.9, issue.9, pp.1363-1373, 2010.
DOI : 10.1128/EC.00088-10

M. Spiering, G. Moran, M. Chauvel, D. Maccallum, and J. Higgins, Comparative Transcript Profiling of Candida albicans and Candida dubliniensis Identifies SFL2, a C. albicans Gene Required for Virulence in a Reconstituted Epithelial Infection Model, Eukaryotic Cell, vol.9, issue.2, pp.251-265, 2010.
DOI : 10.1128/EC.00291-09

Y. Lu, C. Su, and H. Liu, A GATA Transcription Factor Recruits Hda1 in Response to Reduced Tor1 Signaling to Establish a Hyphal Chromatin State in Candida albicans, PLoS Pathogens, vol.148, issue.4, p.1002663, 2012.
DOI : 10.1371/journal.ppat.1002663.s011

H. Liu, J. Kohler, and G. Fink, Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog, Science, vol.266, issue.5191, pp.1723-1726, 1994.
DOI : 10.1126/science.7992058

C. Csank, K. Schroppel, E. Leberer, D. Harcus, and O. Mohamed, Roles of the Candida albicans mitogen-activated protein kinase homolog, Cek1p, in hyphal development and systemic candidiasis, Infect Immun, vol.66, pp.2713-2721, 1998.

A. Schweizer, S. Rupp, B. Taylor, M. Rollinghoff, and K. Schroppel, The TEA/ATTS transcription factor CaTec1p regulates hyphal development and virulence in Candida albicans, Molecular Microbiology, vol.23, issue.3, pp.435-445, 2000.
DOI : 10.1046/j.1365-2958.2000.01874.x

S. Lane, C. Birse, S. Zhou, R. Matson, and H. Liu, DNA Array Studies Demonstrate Convergent Regulation of Virulence Factors by Cph1, Cph2, and Efg1 in Candida albicans, Journal of Biological Chemistry, vol.276, issue.52, pp.48988-48996, 2001.
DOI : 10.1074/jbc.M104484200

S. Lane, S. Zhou, T. Pan, Q. Dai, and H. Liu, The Basic Helix-Loop-Helix Transcription Factor Cph2 Regulates Hyphal Development in Candida albicans Partly via Tec1, Molecular and Cellular Biology, vol.21, issue.19, pp.6418-6428, 2001.
DOI : 10.1128/MCB.21.19.6418-6428.2001

T. Doedt, S. Krishnamurthy, D. Bockmuhl, B. Tebarth, and C. Stempel, APSES Proteins Regulate Morphogenesis and Metabolism in Candida albicans, Molecular Biology of the Cell, vol.15, issue.7, pp.3167-3180, 2004.
DOI : 10.1091/mbc.E03-11-0782

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC452574

P. Singh, N. Chauhan, A. Ghosh, F. Dixon, and R. Calderone, SKN7 of Candida albicans: Mutant Construction and Phenotype Analysis, Infection and Immunity, vol.72, issue.4, pp.2390-2394, 2004.
DOI : 10.1128/IAI.72.4.2390-2394.2004

P. Staib, A. Binder, M. Kretschmar, T. Nichterlein, and K. Schroppel, Tec1p-Independent Activation of a Hypha-Associated Candida albicans Virulence Gene during Infection, Infection and Immunity, vol.72, issue.4, pp.2386-2389, 2004.
DOI : 10.1128/IAI.72.4.2386-2389.2004

M. Bassilana, J. Hopkins, and R. Arkowitz, Regulation of the Cdc42/Cdc24 GTPase Module during Candida albicans Hyphal Growth, Eukaryotic Cell, vol.4, issue.3, pp.588-603, 2005.
DOI : 10.1128/EC.4.3.588-603.2005

URL : https://hal.archives-ouvertes.fr/hal-00321001

Q. Shi, Y. Wang, X. Zheng, R. Lee, and Y. Wang, Critical Role of DNA Checkpoints in Mediating Genotoxic-Stress-induced Filamentous Growth in Candida albicans, Molecular Biology of the Cell, vol.18, issue.3, pp.815-826, 2007.
DOI : 10.1091/mbc.E06-05-0442

R. Shapiro, A. Sellam, F. Tebbji, M. Whiteway, and A. Nantel, Pho85, Pcl1, and Hms1 Signaling Governs Candida albicans Morphogenesis Induced by High Temperature or Hsp90 Compromise, Current Biology, vol.22, issue.6, pp.461-470, 2012.
DOI : 10.1016/j.cub.2012.01.062

URL : http://doi.org/10.1016/j.cub.2012.01.062

J. Kohler and G. Fink, Candida albicans strains heterozygous and homozygous for mutations in mitogen-activated protein kinase signaling components have defects in hyphal development, Proceedings of the National Academy of Sciences, vol.86, issue.1, pp.13223-13228, 1996.
DOI : 10.1016/S0092-8674(00)80081-1

E. Leberer, C. Wu, T. Leeuw, A. Fourest-lieuvin, and J. Segall, Functional characterization of the Cdc42p binding domain of yeast Ste20p protein kinase, The EMBO Journal, vol.16, issue.1, pp.83-97, 1997.
DOI : 10.1093/emboj/16.1.83

S. Ganguly, A. Bishop, W. Xu, S. Ghosh, and K. Nickerson, Zap1 Control of Cell-Cell Signaling in Candida albicans Biofilms, Eukaryotic Cell, vol.10, issue.11, pp.1448-1454, 2011.
DOI : 10.1128/EC.05196-11

M. Kim, M. Kil, J. Jung, and J. Kim, Roles of Zinc-responsive transcription factor Csr1 in filamentous growth of the pathogenic Yeast Candida albicans, J Microbiol Biotechnol, vol.18, pp.242-247, 2008.

C. Lan, G. Rodarte, L. Murillo, T. Jones, and R. Davis, Regulatory networks affected by iron availability in Candida albicans, Molecular Microbiology, vol.259, issue.5, pp.1451-1469, 2004.
DOI : 10.1111/j.1365-2958.2004.04214.x

F. Cottier, R. M. Kurzai, O. Bolstad, M. Leewattanapasuk, and W. , The bZIP Transcription Factor Rca1p Is a Central Regulator of a Novel CO2 Sensing Pathway in Yeast, PLoS Pathogens, vol.8, issue.1, p.1002485, 2012.
DOI : 10.1371/journal.ppat.1002485.s014

S. Michel, S. Ushinsky, B. Klebl, E. Leberer, and D. Thomas, Generation of conditional lethal Candida albicans mutants by inducible deletion of essential genes, Molecular Microbiology, vol.285, issue.1, pp.269-280, 2002.
DOI : 10.1046/j.1365-2958.2002.03167.x

M. Bassilana, J. Blyth, and R. Arkowitz, Cdc24, the GDP-GTP Exchange Factor for Cdc42, Is Required for Invasive Hyphal Growth of Candida albicans, Eukaryotic Cell, vol.2, issue.1, pp.9-18, 2003.
DOI : 10.1128/EC.2.1.9-18.2003

URL : https://hal.archives-ouvertes.fr/hal-00321009

M. Lorenz, N. Cutler, and J. Heitman, Characterization of Alcohol-induced Filamentous Growth in Saccharomyces cerevisiae, Molecular Biology of the Cell, vol.11, issue.1, pp.183-199, 2000.
DOI : 10.1091/mbc.11.1.183

C. Hurtado and R. Rachubinski, Isolation and Characterization of YlBEM1, a Gene Required for Cell Polarization and Differentiation in the Dimorphic Yeast Yarrowia lipolytica, Eukaryotic Cell, vol.1, issue.4, pp.526-537, 2002.
DOI : 10.1128/EC.1.4.526-537.2002

H. Park, Y. Liu, N. Solis, J. Spotkov, and J. Hamaker, Transcriptional Responses of Candida albicans to Epithelial and Endothelial Cells, Eukaryotic Cell, vol.8, issue.10, pp.1498-1510, 2009.
DOI : 10.1128/EC.00165-09

H. Nakayama, T. Mio, S. Nagahashi, M. Kokado, and M. Arisawa, Tetracycline-Regulatable System To Tightly Control Gene Expression in the Pathogenic Fungus Candida albicans, Infection and Immunity, vol.68, issue.12, pp.6712-6719, 2000.
DOI : 10.1128/IAI.68.12.6712-6719.2000

J. Rual, D. Hill, and M. Vidal, ORFeome projects: gateway between genomics and omics, Current Opinion in Chemical Biology, vol.8, issue.1, pp.20-25, 2004.
DOI : 10.1016/j.cbpa.2003.12.002

M. Legrand and C. Munro, Cool Tools 5: The Candida albicans ORFeome Project, Candida and candidiasis, pp.505-510, 2011.
DOI : 10.1128/9781555817176.ch34

D. Bockmuhl, S. Krishnamurthy, M. Gerads, A. Sonneborn, and J. Ernst, Distinct and redundant roles of the two protein kinase A isoforms Tpk1p and Tpk2p in morphogenesis and growth of Candida albicans, Molecular Microbiology, vol.64, issue.5, pp.1243-1257, 2001.
DOI : 10.1046/j.1365-2958.2001.02688.x

Q. Feng, E. Summers, B. Guo, and G. Fink, Ras signaling is required for seruminduced hyphal differentiation in Candida albicans, J Bacteriol, vol.181, pp.6339-6346, 1999.

T. Miwa, Y. Takagi, M. Shinozaki, C. Yun, and W. Schell, Gpr1, a Putative G-Protein-Coupled Receptor, Regulates Morphogenesis and Hypha Formation in the Pathogenic Fungus Candida albicans, Eukaryotic Cell, vol.3, issue.4, pp.919-931, 2004.
DOI : 10.1128/EC.3.4.919-931.2004

K. Yoshikawa, T. Tanaka, Y. Ida, C. Furusawa, and T. Hirasawa, Comprehensive phenotypic analysis of single-gene deletion and overexpression strains of Saccharomyces cerevisiae, Yeast, vol.4, issue.6896, pp.349-361, 2011.
DOI : 10.1002/yea.1843

K. Mccluskey, A. Wiest, and M. Plamann, The Fungal Genetics Stock Center: a repository for 50 years of fungal genetics research, Journal of Biosciences, vol.47, issue.1, pp.119-126, 2010.
DOI : 10.1007/s12038-010-0014-6

M. Gossen and H. Bujard, Anhydrotetracycline, a novel effector for tetracycline controlled gene expression systems in eukaryotic cells, Nucleic Acids Research, vol.21, issue.18, pp.4411-4412, 1993.
DOI : 10.1093/nar/21.18.4411

R. Taylor, D. Walker, and R. Mcinnes, host strains significantly affect the quality of small scale plasmid DNA preparations used for sequencing, Nucleic Acids Research, vol.21, issue.7, pp.1677-1678, 1993.
DOI : 10.1093/nar/21.7.1677

V. Cabral, M. Chauvel, A. Firon, M. Legrand, and A. Nesseir, Modular Gene Over-expression Strategies for Candida albicans, Methods Mol Biol, vol.845, pp.227-244, 2012.
DOI : 10.1007/978-1-61779-539-8_15

A. Gillum, E. Tsay, and D. Kirsch, Isolation of the Candida albicans gene for orotidine-5?-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations, MGG Molecular & General Genetics, vol.180, issue.1, pp.179-182, 1984.
DOI : 10.1007/BF00328721

M. Arnaud, M. Costanzo, M. Skrzypek, P. Shah, and G. Binkley, Sequence resources at the Candida Genome Database, Nucleic Acids Research, vol.35, issue.Database, pp.452-456, 2007.
DOI : 10.1093/nar/gkl899

URL : http://doi.org/10.1093/nar/gkl899

S. Gola, R. Martin, A. Walther, A. Dunkler, and J. Wendland, : rapid and efficient gene targeting using 100 bp of flanking homology region, Yeast, vol.181, issue.16, pp.1339-1347, 2003.
DOI : 10.1002/yea.1044

R. Eason, N. Pourmand, W. Tongprasit, Z. Herman, and K. Anthony, Characterization of synthetic DNA bar codes in Saccharomyces cerevisiae gene-deletion strains, Proceedings of the National Academy of Sciences, vol.70, issue.3, pp.11046-11051, 2004.
DOI : 10.1038/6791

A. Walther and J. Wendland, An improved transformation protocol for the human fungal pathogen Candida albicans, Current Genetics, vol.42, issue.6, pp.339-343, 2003.
DOI : 10.1007/s00294-002-0349-0

V. Der-haar and T. , Optimized Protein Extraction for Quantitative Proteomics of Yeasts, PLoS ONE, vol.76, issue.10, p.1078, 2007.
DOI : 10.1371/journal.pone.0001078.g006

R. Wilson, D. Davis, and A. Mitchell, Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions, J Bacteriol, vol.181, pp.1868-1874, 1999.

A. Firon, S. Aubert, I. Iraqui, S. Guadagnini, and S. Goyard, The SUN41 and SUN42 genes are essential for cell separation in Candida albicans, Molecular Microbiology, vol.181, issue.5, pp.1256-1275, 2007.
DOI : 10.1111/j.1365-2958.2005.04507.x