J. Costerton, P. Stewart, and E. Greenberg, Bacterial Biofilms: A Common Cause of Persistent Infections, Science, vol.284, issue.5418, pp.1318-1322, 1999.
DOI : 10.1126/science.284.5418.1318

R. Donlan and J. Costerton, Biofilms: Survival Mechanisms of Clinically Relevant Microorganisms, Clinical Microbiology Reviews, vol.15, issue.2, pp.167-193, 2002.
DOI : 10.1128/CMR.15.2.167-193.2002

L. Hall-stoodley and P. Stoodley, Evolving concepts in biofilm infections, Cellular Microbiology, vol.190, issue.7, pp.1034-1043, 2009.
DOI : 10.1111/j.1462-5822.2009.01323.x

Y. Ning, X. Hu, J. Ling, Y. Du, J. Liu et al., survival and biofilm formation under starvation conditions, International Endodontic Journal, vol.31, issue.1, pp.62-70, 2013.
DOI : 10.1111/j.1365-2591.2012.02094.x

P. Stoodley, K. Sauer, D. Davies, and J. Costerton, Biofilms as Complex Differentiated Communities, Annual Review of Microbiology, vol.56, issue.1, pp.187-209, 2002.
DOI : 10.1146/annurev.micro.56.012302.160705

D. Monroe, Looking for Chinks in the Armor of Bacterial Biofilms, PLoS Biology, vol.5, issue.11, p.307, 2007.
DOI : 10.1371/journal.pbio.0050307.g002

J. Chandra, D. Kuhn, P. Mukherjee, L. Hoyer, T. Mccormick et al., Biofilm Formation by the Fungal Pathogen Candida albicans: Development, Architecture, and Drug Resistance, Journal of Bacteriology, vol.183, issue.18, pp.5385-5394, 2001.
DOI : 10.1128/JB.183.18.5385-5394.2001

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC95423

E. Mowat, C. Williams, B. Jones, S. Mcchlery, and G. Ramage, The characteristics of Aspergillus fumigatus mycetoma development: is this a biofilm?, Med Mycol, issue.1, pp.47-120, 2009.

C. Kumamoto, Candida biofilms, Current Opinion in Microbiology, vol.5, issue.6, pp.608-611, 2002.
DOI : 10.1016/S1369-5274(02)00371-5

S. Hawser and L. Douglas, Biofilm formation by Candida species on the surface of catheter materials in vitro, Infect Immun, vol.62, pp.915-921, 1994.

J. Blankenship and A. Mitchell, How to build a biofilm: a fungal perspective, Current Opinion in Microbiology, vol.9, issue.6, pp.588-594, 2006.
DOI : 10.1016/j.mib.2006.10.003

J. Finkel and A. Mitchell, Genetic control of Candida albicans biofilm development, Nature Reviews Microbiology, vol.45, issue.2, pp.109-118, 2011.
DOI : 10.1038/nrmicro2475

C. Nobile and A. Mitchell, Regulation of Cell-Surface Genes and Biofilm Formation by the C. albicans Transcription Factor Bcr1p, Current Biology, vol.15, issue.12, pp.1150-1155, 2005.
DOI : 10.1016/j.cub.2005.05.047

C. Stichternoth and J. Ernst, Hypoxic Adaptation by Efg1 Regulates Biofilm Formation by Candida albicans, Applied and Environmental Microbiology, vol.75, issue.11, pp.3663-3672, 2009.
DOI : 10.1128/AEM.00098-09

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2687269

T. Lassak, E. Schneider, M. Bussmann, D. Kurtz, J. Manak et al., Target specificity of the Candida albicans Efg1 regulator, Molecular Microbiology, vol.5, issue.3, pp.602-618, 2011.
DOI : 10.1111/j.1365-2958.2011.07837.x

C. Nobile, D. Andes, J. Nett, F. Smith, F. Yue et al., Critical Role of Bcr1-Dependent Adhesins in C. albicans Biofilm Formation In Vitro and In Vivo, PLoS Pathogens, vol.150, issue.7, p.63, 2006.
DOI : 10.1371/journal.ppat.0020063.sg001

S. Fanning, W. Xu, N. Solis, C. Woolford, S. Filler et al., Divergent Targets of Candida albicans Biofilm Regulator Bcr1 In Vitro and In Vivo, Eukaryotic Cell, vol.11, issue.7, pp.896-904, 2012.
DOI : 10.1128/EC.00103-12

C. Ding and G. Butler, Development of a Gene Knockout System in Candida parapsilosis Reveals a Conserved Role for BCR1 in Biofilm Formation, Eukaryotic Cell, vol.6, issue.8, pp.1310-1319, 2007.
DOI : 10.1128/EC.00136-07

N. Bharucha, Y. Chabrier-rosello, T. Xu, C. Johnson, S. Sobczynski et al., A Large-Scale Complex Haploinsufficiency-Based Genetic Interaction Screen in Candida albicans: Analysis of the RAM Network during Morphogenesis, PLoS Genetics, vol.16, issue.4, p.1002058, 2011.
DOI : 10.1371/journal.pgen.1002058.s002

S. Saputo, Y. Chabrier-rosello, F. Luca, A. Kumar, and D. Krysan, The RAM Network in Pathogenic Fungi, Eukaryotic Cell, vol.11, issue.6, pp.708-717, 2012.
DOI : 10.1128/EC.00044-12

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3370468

S. Hawser and L. Douglas, Resistance of Candida albicans biofilms to antifungal agents in vitro, Antimicrobial Agents and Chemotherapy, vol.39, issue.9, pp.2128-2131, 1995.
DOI : 10.1128/AAC.39.9.2128

H. Flemming and J. Wingender, The biofilm matrix, Nature Reviews Microbiology, vol.79, pp.623-633, 2010.
DOI : 10.1038/nrmicro2415

G. Ramage, K. Vandewalle, S. Bachmann, B. Wickes, and J. Lopez-ribot, In Vitro Pharmacodynamic Properties of Three Antifungal Agents against Preformed Candida albicans Biofilms Determined by Time-Kill Studies, Antimicrobial Agents and Chemotherapy, vol.46, issue.11, pp.3634-3636, 2002.
DOI : 10.1128/AAC.46.11.3634-3636.2002

G. Baillie and L. Douglas, Matrix polymers of Candida biofilms and their possible role in biofilm resistance to antifungal agents, Journal of Antimicrobial Chemotherapy, vol.46, issue.3, pp.397-403, 2000.
DOI : 10.1093/jac/46.3.397

G. Ramage, R. Rajendran, L. Sherry, and C. Williams, Fungal Biofilm Resistance, International Journal of Microbiology, vol.27, issue.1, p.528521, 2012.
DOI : 10.1002/pmic.200900611

URL : http://doi.org/10.1155/2012/528521

J. Nett, L. Lincoln, K. Marchillo, and D. Andes, ?????1,3 Glucan as a Test for Central Venous Catheter Biofilm Infection, The Journal of Infectious Diseases, vol.195, issue.11, pp.1705-1712, 2007.
DOI : 10.1086/517522

URL : http://jid.oxfordjournals.org/cgi/content/short/195/11/1705

J. Nett, L. Lincoln, K. Marchillo, R. Massey, K. Holoyda et al., Putative Role of ??-1,3 Glucans in Candida albicans Biofilm Resistance, Antimicrobial Agents and Chemotherapy, vol.51, issue.2, pp.510-520, 2007.
DOI : 10.1128/AAC.01056-06

G. Vediyappan, T. Rossignol, and C. Enfert, Interaction of Candida albicans Biofilms with Antifungals: Transcriptional Response and Binding of Antifungals to Beta-Glucans, Antimicrobial Agents and Chemotherapy, vol.54, issue.5, pp.2096-2111, 2010.
DOI : 10.1128/AAC.01638-09

J. Nett, K. Crawford, K. Marchillo, and D. Andes, Role of Fks1p and Matrix Glucan in Candida albicans Biofilm Resistance to an Echinocandin, Pyrimidine, and Polyene, Antimicrobial Agents and Chemotherapy, vol.54, issue.8, pp.3505-3508, 2010.
DOI : 10.1128/AAC.00227-10

J. Nett, H. Sanchez, M. Cain, and D. Andes, Biofilm Resistance Due to Drug???Sequestering Matrix Glucan, The Journal of Infectious Diseases, vol.202, issue.1, pp.171-175, 2010.
DOI : 10.1086/651200

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2880631

H. Taff, J. Nett, R. Zarnowski, K. Ross, H. Sanchez et al., A Candida biofilm-induced pathway for matrix glucan delivery: implications for drug resistance This interesting study reveals a new pathway for the delivery of glucans to the matrix of C. albicans biofilms. This discovery is not only essential to understand the mechanisms of antifungal tolerance induced in the biofilm , but also to develop potentially new antifungal targets 40 Interface of Candida albicans biofilm matrix-associated drug resistance and cell wall integrity regulation, PLoS Pathog Nett JE Eukaryot Cell, vol.8, issue.10, pp.10028481660-1669, 2011.

P. Stewart and M. Franklin, Physiological heterogeneity in biofilms, Nature Reviews Microbiology, vol.167, issue.3, pp.199-210, 2008.
DOI : 10.1038/nrmicro1838

S. Garcia-sanchez, S. Aubert, I. Iraqui, G. Janbon, and J. Ghigo, Candida albicans Biofilms: a Developmental State Associated With Specific and Stable Gene Expression Patterns, Eukaryotic Cell, vol.3, issue.2, pp.536-545, 2004.
DOI : 10.1128/EC.3.2.536-545.2004

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC387656

J. Gibbons, A. Beauvais, R. Beau, K. Mcgary, J. Latge et al., Global Transcriptome Changes Underlying Colony Growth in the Opportunistic Human Pathogen Aspergillus fumigatus, Eukaryotic Cell, vol.11, issue.1, pp.68-78, 2011.
DOI : 10.1128/EC.05102-11

L. Murillo, G. Newport, C. Lan, S. Habelitz, J. Dungan et al., Genome-Wide Transcription Profiling of the Early Phase of Biofilm Formation by Candida albicans, Eukaryotic Cell, vol.4, issue.9, pp.1562-1573, 2005.
DOI : 10.1128/EC.4.9.1562-1573.2005

K. Yeater, J. Chandra, G. Cheng, P. Mukherjee, X. Zhao et al., Temporal analysis of Candida albicans gene expression during biofilm development, Microbiology, vol.153, issue.8, pp.2373-2385, 2007.
DOI : 10.1099/mic.0.2007/006163-0

J. Nett, A. Lepak, K. Marchillo, and D. Andes, Biofilm, The Journal of Infectious Diseases, vol.200, issue.2, pp.307-313, 2009.
DOI : 10.1086/599838

A. Traven, A. Janicke, P. Harrison, A. Swaminathan, T. Seemann et al., Transcriptional Profiling of a Yeast Colony Provides New Insight into the Heterogeneity of Multicellular Fungal Communities, PLoS ONE, vol.7, issue.9, p.46243, 2012.
DOI : 10.1371/journal.pone.0046243.s001

M. Cap, L. Stepanek, K. Harant, L. Vachova, and Z. Palkova, Cell Differentiation within a Yeast Colony: Metabolic and Regulatory Parallels with a Tumor-Affected Organism, Molecular Cell, vol.46, issue.4, pp.436-448, 2012.
DOI : 10.1016/j.molcel.2012.04.001

A. Petti, R. Mcisaac, O. Ho-shing, H. Bussemaker, and D. Botstein, Combinatorial control of diverse metabolic and physiological functions by transcriptional regulators of the yeast sulfur assimilation pathway, Molecular Biology of the Cell, vol.23, issue.15, pp.3008-3024, 2012.
DOI : 10.1091/mbc.E12-03-0233

T. Rossignol, C. Ding, A. Guida, C. Enfert, D. Higgins et al., Correlation between Biofilm Formation and the Hypoxic Response in Candida parapsilosis, Eukaryotic Cell, vol.8, issue.4, pp.550-559, 2009.
DOI : 10.1128/EC.00350-08

C. Askew, A. Sellam, E. Epp, H. Hogues, A. Mullick et al., Transcriptional Regulation of Carbohydrate Metabolism in the Human Pathogen Candida albicans, PLoS Pathogens, vol.72, issue.3, p.1000612, 2009.
DOI : 10.1371/journal.ppat.1000612.s027

J. Bonhomme, M. Chauvel, S. Goyard, P. Roux, and T. Rossignol, Contribution of the glycolytic flux and hypoxia adaptation to efficient biofilm formation by Candida albicans, Molecular Microbiology, vol.153, issue.4, pp.995-1013, 2011.
DOI : 10.1111/j.1365-2958.2011.07626.x

M. Lafleur, C. Kumamoto, and K. Lewis, Candida albicans Biofilms Produce Antifungal-Tolerant Persister Cells, Antimicrobial Agents and Chemotherapy, vol.50, issue.11, pp.3839-3846, 2006.
DOI : 10.1128/AAC.00684-06