J. Ahn, M. Urist, and C. Prives, The Chk2 protein kinase, DNA Repair, vol.3, issue.8-9, pp.1039-1086, 2004.
DOI : 10.1016/j.dnarep.2004.03.033

A. Alcasabas, A. Osborn, J. Bachant, F. Hu, P. Werler et al., Mrc1 transduces signals of DNA replication stress to activate Rad53, Nature Cell Biology, vol.3, issue.11, pp.958-1023, 2001.
DOI : 10.1038/ncb1101-958

E. Andaluz, T. Ciudad, J. Gomez-raja, R. Calderone, and G. Larriba, triggers both the DNA-damage checkpoint and filamentation accompanied by but independent of expression of hypha-specific genes, Molecular Microbiology, vol.23, issue.5, pp.1452-1472, 2006.
DOI : 10.1111/j.1365-2958.2005.05038.x

E. Andaluz, A. Bellido, J. Gómez-raja, A. Selmecki, K. Bouchonville et al., Rad52 function prevents chromosome loss and truncation in Candida albicans, Molecular Microbiology, vol.103, issue.6, pp.1462-1482, 2011.
DOI : 10.1111/j.1365-2958.2011.07532.x

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3564047

M. Andersen, Z. Nelson, E. Hetrick, and D. Gottschling, A Genetic Screen for Increased Loss of Heterozygosity in Saccharomyces cerevisiae, Genetics, vol.179, issue.3, pp.1179-1274, 2008.
DOI : 10.1534/genetics.108.089250

B. Andreson, A. Gupta, B. Georgieva, and R. And-rothstein, The ribonucleotide reductase inhibitor, Sml1, is sequentially phosphorylated, ubiquitylated and degraded in response to DNA damage, Nucleic Acids Research, vol.38, issue.19, pp.6490-6991, 2010.
DOI : 10.1093/nar/gkq552

M. B. Arnaud, D. O. Inglis, M. S. Skrzypek, J. Binkley, P. Shah et al., Cyclin Cln3p links G1 progression to hyphal and pseudohyphal development in Candida albicans, Eukaryot Cell, vol.4, pp.95-102, 2005.

C. Bachewich, A. Nantel, and M. Whiteway, Cell cycle arrest during S or M phase generates polarized growth via distinct signals in Candida albicans, Molecular Microbiology, vol.23, issue.4, pp.942-959, 2005.
DOI : 10.1111/j.1365-2958.2005.04727.x

E. Bensen, A. Clemente-blanco, K. Finley, J. Correa-bordes, and J. Berman, The Mitotic Cyclins Clb2p and Clb4p Affect Morphogenesis in Candida albicans, Molecular Biology of the Cell, vol.16, issue.7, pp.3387-3400, 2005.
DOI : 10.1091/mbc.E04-12-1081

M. E. Bougnoux, D. Diogo, N. Francois, B. Sendid, S. Veirmeire et al., Multilocus Sequence Typing Reveals Intrafamilial Transmission and Microevolutions of Candida albicans Isolates from the Human Digestive Tract, Journal of Clinical Microbiology, vol.44, issue.5, pp.1810-1820, 2006.
DOI : 10.1128/JCM.44.5.1810-1820.2006

V. Cabral, M. Chauvel, A. Firon, M. Legrand, A. Nesseir et al., Modular Gene Over-expression Strategies for Candida albicans, Methods Mol Biol, vol.845, pp.227-244, 2012.
DOI : 10.1007/978-1-61779-539-8_15

J. A. Calera, C. , and R. , Histidine kinase, twocomponent signal transduction proteins of Candida albicans and the pathogenesis of candidosis, Mycoses, vol.42, pp.49-53, 1999.

M. Chauvel, A. Nesseir, V. Cabral, S. Znaidi, S. Goyard et al., A Versatile Overexpression Strategy in the Pathogenic Yeast Candida albicans: Identification of Regulators of Morphogenesis and Fitness, PLoS ONE, vol.7, issue.9, p.45912, 2012.
DOI : 10.1371/journal.pone.0045912.s005

URL : https://hal.archives-ouvertes.fr/pasteur-01523618

A. Coste, V. Turner, F. Ischer, J. Morschhäuser, A. Forche et al., A Mutation in Tac1p, a Transcription Factor Regulating CDR1 and CDR2, Is Coupled With Loss of Heterozygosity at Chromosome 5 to Mediate Antifungal Resistance in Candida albicans, Genetics, vol.172, issue.4, pp.2139-2195, 2006.
DOI : 10.1534/genetics.105.054767

A. Coste, A. Selmecki, A. Forche, D. Diogo, M. Bougnoux et al., Genotypic Evolution of Azole Resistance Mechanisms in Sequential Candida albicans Isolates, Eukaryotic Cell, vol.6, issue.10, pp.1889-2793, 2007.
DOI : 10.1128/EC.00151-07

A. Emili, MEC1-Dependent Phosphorylation of Rad9p in Response to DNA Damage, Molecular Cell, vol.2, issue.2, pp.183-192, 1998.
DOI : 10.1016/S1097-2765(00)80128-8

D. Fay, Z. Sun, and D. Stern, Mutations in SPK1/RAD53 that specifically abolish checkpoint but not growth-related functions, Current Genetics, vol.31, issue.2, pp.97-202, 1997.
DOI : 10.1007/s002940050181

S. Fiorani, G. Mimun, L. Caleca, D. Piccini, and A. Pellicioli, Characterization of the activation domain of the Rad53 checkpoint kinase, Cell Cycle, vol.7, issue.4, pp.493-502, 2008.
DOI : 10.4161/cc.7.4.5323

W. Fonzi and M. Irwin, Isogenic strain construction and gene mapping in Candida albicans, Genetics, vol.134, pp.717-745, 1993.

A. Forche, K. Alby, D. Schaefer, A. D. Johnson, J. Berman et al., The Parasexual Cycle in Candida albicans Provides an Alternative Pathway to Meiosis for the Formation of Recombinant Strains, PLoS Biology, vol.169, issue.5, p.110, 2008.
DOI : 10.1371/journal.pbio.0060110.st006

A. Forche, P. T. Magee, A. Selmecki, J. Berman, M. et al., Evolution in Candida albicans Populations During a Single Passage Through a Mouse Host, Genetics, vol.182, issue.3, pp.799-811, 2009.
DOI : 10.1534/genetics.109.103325

A. Forche, M. Steinbach, and J. Berman, allelic status using SNP-RFLP, FEMS Yeast Research, vol.9, issue.7, pp.1061-1069, 2009.
DOI : 10.1111/j.1567-1364.2009.00542.x

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2763041

A. Forche, D. Abbey, T. Pisithkul, M. Weinzierl, T. Ringstrom et al., Stress Alters Rates and Types of Loss of Heterozygosity in Candida albicans, mBio, vol.2, issue.4, pp.129-00111, 2011.
DOI : 10.1128/mBio.00129-11

F. Garcia-prieto, J. Gomez-raja, E. Andaluz, R. Calderone, and G. Larriba, Role of the homologous recombination genes RAD51 and RAD59 in the resistance of Candida albicans to UV light, radiomimetic and anti-tumor compounds and oxidizing agents, Fungal Genetics and Biology, vol.47, issue.5, pp.433-445, 2010.
DOI : 10.1016/j.fgb.2010.02.007

S. Gola, R. Martin, A. Walther, A. Dunkler, W. et al., : rapid and efficient gene targeting using 100 bp of flanking homology region, Yeast, vol.181, issue.16, pp.1339-1347, 2003.
DOI : 10.1002/yea.1044

V. Gottifredi and C. Prives, The S phase checkpoint: When the crowd meets at the fork, Seminars in Cell & Developmental Biology, vol.16, issue.3, pp.355-368, 2005.
DOI : 10.1016/j.semcdb.2005.02.011

D. Hanway, J. Chin, G. Xia, G. Oshiro, E. Winzeler et al., Previously uncharacterized genes in the UV- and MMS-induced DNA damage response in yeast, Proceedings of the National Academy of Sciences, vol.19, issue.23, pp.10605-10615, 2002.
DOI : 10.1093/emboj/19.23.6392

M. A. Hickman, G. Zeng, A. Forche, M. P. Hirakawa, D. Abbey et al., The ???obligate diploid??? Candida albicans forms mating-competent haploids, Nature, vol.32, issue.7435, pp.55-59, 2013.
DOI : 10.1038/nature11865

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3583542

J. H. Hoeijmakers, Genome maintenance mechanisms for preventing cancer, Nature, vol.411, issue.6835, pp.366-374, 2001.
DOI : 10.1038/35077232

M. Huang, Z. Zhou, and S. Elledge, The DNA Replication and Damage Checkpoint Pathways Induce Transcription by Inhibition of the Crt1 Repressor, Cell, vol.94, issue.5, pp.595-1200, 1998.
DOI : 10.1016/S0092-8674(00)81601-3

H. L. Klein, Spontaneous chromosome loss in Saccharomyces cerevisiae is suppressed by DNA damage checkpoint functions, Genetics, vol.159, pp.1501-1509, 2001.

S. J. Lee, M. F. Schwartz, J. K. Duong, and D. F. Stern, Rad53 Phosphorylation Site Clusters Are Important for Rad53 Regulation and Signaling, Molecular and Cellular Biology, vol.23, issue.17, pp.6300-6314, 2003.
DOI : 10.1128/MCB.23.17.6300-6314.2003

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC180918

M. Legrand, C. L. Chan, P. A. Jauert, and D. T. Kirkpatrick, Role of DNA Mismatch Repair and Double-Strand Break Repair in Genome Stability and Antifungal Drug Resistance in Candida albicans, Eukaryotic Cell, vol.6, issue.12, pp.2194-2205, 2007.
DOI : 10.1128/EC.00299-07

M. Legrand, C. L. Chan, P. A. Jauert, and D. T. Kirkpatrick, Analysis of base excision and nucleotide excision repair in Candida albicans, Microbiology, vol.154, issue.8, pp.2446-2456, 2008.
DOI : 10.1099/mic.0.2008/017616-0

M. Legrand, C. L. Chan, P. A. Jauert, and D. T. Kirkpatrick, The contribution of the S-phase checkpoint genes MEC1 and SGS1 to genome stability maintenance in Candida albicans, Fungal Genetics and Biology, vol.48, issue.8, pp.823-830, 2011.
DOI : 10.1016/j.fgb.2011.04.005

A. M. Murad, P. R. Lee, I. D. Broadbent, C. J. Barelle, and A. J. Brown, CIp10, an efficient and convenient integrating vector forCandida albicans, Yeast, vol.48, issue.4, pp.325-327, 2000.
DOI : 10.1002/1097-0061(20000315)16:4<325::AID-YEA538>3.0.CO;2-#

K. Myung, C. Chen, and R. Kolodner, Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae, Nature, vol.411, issue.6841, pp.1073-1079, 2001.
DOI : 10.1038/35082608

S. Noble, J. , and A. , Strains and Strategies for Large-Scale Gene Deletion Studies of the Diploid Human Fungal Pathogen Candida albicans, Eukaryotic Cell, vol.4, issue.2, pp.298-607, 2005.
DOI : 10.1128/EC.4.2.298-309.2005

O. Neill, B. Szyjka, S. Lis, E. Bailey, A. Yates et al., Pph3 Psy2 is a phosphatase complex required for Rad53 dephosphorylation and replication fork restart during recovery from DNA damage, Proceedings of the National Academy of Sciences, vol.579, issue.15, pp.9290-9295, 2007.
DOI : 10.1016/j.febslet.2005.04.070

A. Olaiya and S. Sogin, Ploidy determination of Candida albicans, J Bacteriol, vol.140, pp.1043-1052, 1979.

S. Ossowski, K. Schneeberger, R. M. Clark, C. Lanz, N. Warthmann et al., Sequencing of natural strains of Arabidopsis thaliana with short reads, Genome Research, vol.18, issue.12, pp.2024-2033, 2008.
DOI : 10.1101/gr.080200.108

A. Pellicioli, C. Lucca, G. Liberi, F. Marini, M. Lopes et al., Activation of Rad53 kinase in response to DNA damage and its effect in modulating phosphorylation of the lagging strand DNA polymerase, The EMBO Journal, vol.18, issue.22, pp.6561-6633, 1999.
DOI : 10.1093/emboj/18.22.6561

S. J. Pfau and A. Amon, Chromosomal instability and aneuploidy in cancer: from yeast to man, EMBO reports, vol.58, issue.6, pp.515-527, 2012.
DOI : 10.1182/blood.V100.1.29

O. Reuß, Å. Vik, R. Kolter, and J. Morschhäuser, The SAT1 flipper, an optimized tool for gene disruption in Candida albicans, Gene, vol.341, pp.119-127, 2004.
DOI : 10.1016/j.gene.2004.06.021

T. Rustad, D. Stevens, M. Pfaller, and T. White, Homozygosity at the Candida albicans MTL locus associated with azole resistance, Microbiology, vol.148, issue.4, pp.1061-1133, 2002.
DOI : 10.1099/00221287-148-4-1061

E. Rustchenko, Chromosome instability in Candida albicans, FEMS Yeast Research, vol.7, issue.1, pp.2-13, 2007.
DOI : 10.1111/j.1567-1364.2006.00150.x

Y. Sanchez, Control of the DNA Damage Checkpoint by Chk1 and Rad53 Protein Kinases Through Distinct Mechanisms, Science, vol.286, issue.5442, pp.1166-1171, 1999.
DOI : 10.1126/science.286.5442.1166

R. Schiestl and R. Gietz, High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier, Current Genetics, vol.76, issue.5-6, pp.339-346, 1989.
DOI : 10.1007/BF00340712

A. Selmecki, A. Forche, and J. Berman, Genomic Plasticity of the Human Fungal Pathogen Candida albicans, Eukaryotic Cell, vol.9, issue.7, pp.991-1008, 2010.
DOI : 10.1128/EC.00060-10

Q. Shi, Y. Wang, X. Zheng, R. Lee, W. et al., Critical Role of DNA Checkpoints in Mediating Genotoxic-Stress-induced Filamentous Growth in Candida albicans, Molecular Biology of the Cell, vol.18, issue.3, pp.815-841, 2007.
DOI : 10.1091/mbc.E06-05-0442

M. Shimada and M. Nakanishi, DNA Damage Checkpoints and Cancer, Journal of Molecular Histology, vol.16, issue.5-7, pp.253-260, 2006.
DOI : 10.1007/s10735-006-9039-4

R. Sikorski and P. Hieter, A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae, Genetics, vol.122, pp.19-27, 1989.

M. Smolka, C. Albuquerque, S. Chen, K. Schmidt, X. Wei et al., Dynamic Changes in Protein-Protein Interaction and Protein Phosphorylation Probed with Amine-reactive Isotope Tag, Molecular & Cellular Proteomics, vol.4, issue.9, pp.1358-1427, 2005.
DOI : 10.1074/mcp.M500115-MCP200

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2813687

L. L. Sun, W. J. Li, H. T. Wang, J. Chen, P. Deng et al., Protein Phosphatase Pph3 and Its Regulatory Subunit Psy2 Regulate Rad53 Dephosphorylation and Cell Morphogenesis during Recovery from DNA Damage in Candida albicans, Eukaryotic Cell, vol.10, issue.11, pp.1565-1573, 2011.
DOI : 10.1128/EC.05042-11

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3209060