M. Mean, O. Marchetti, and C. T. , Bench-to-bedside review: Candida infections in the intensive care unit, Critical Care, vol.12, issue.1, p.204, 2008.
DOI : 10.1186/cc6212

J. Perlroth, B. Choi, and B. Spellberg, Nosocomial fungal infections: epidemiology, diagnosis, and treatment, Medical Mycology, vol.45, issue.4, pp.321-346, 2007.
DOI : 10.1080/13693780701218689

M. Pfaller, D. Diekema, D. Gibbs, V. Newell, and R. Barton, Geographic variation in the frequency of isolation and fluconazole and voriconazole susceptibilities of Candida glabrata: an assessment from the ARTEMIS DISK Global Antifungal Surveillance Program, Diagnostic Microbiology and Infectious Disease, vol.67, issue.2, pp.162-171, 2010.
DOI : 10.1016/j.diagmicrobio.2010.01.002

M. Richardson and C. Lass-florl, Changing epidemiology of systemic fungal infections, Clinical Microbiology and Infection, vol.14, issue.4, pp.5-24, 2008.
DOI : 10.1111/j.1469-0691.2008.01978.x

N. Gow, F. Van-de-veerdonk, A. Brown, and M. Netea, Candida albicans morphogenesis and host defence: discriminating invasion from colonization, Nature Reviews Microbiology, vol.139, pp.112-122, 2011.
DOI : 10.1038/nrmicro2711

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624162

A. Albrecht, A. Felk, I. Pichova, J. Naglik, and M. Schaller, Glycosylphosphatidylinositol-anchored Proteases of Candida albicans Target Proteins Necessary for Both Cellular Processes and Host-Pathogen Interactions, Journal of Biological Chemistry, vol.281, issue.2, pp.688-694, 2006.
DOI : 10.1074/jbc.M509297200

M. Ghannoum, Potential Role of Phospholipases in Virulence and Fungal Pathogenesis, Clinical Microbiology Reviews, vol.13, issue.1, pp.122-143, 2000.
DOI : 10.1128/CMR.13.1.122-143.2000

A. Panackal, J. Gribskov, J. Staab, K. Kirby, and M. Rinaldi, Clinical Significance of Azole Antifungal Drug Cross-Resistance in Candida glabrata, Journal of Clinical Microbiology, vol.44, issue.5, pp.1740-1743, 2006.
DOI : 10.1128/JCM.44.5.1740-1743.2006

M. Pfaller, D. Diekema, D. Gibbs, V. Newell, and D. Ellis, Results from the ARTEMIS DISK Global Antifungal Surveillance Study, 1997 to 2007: a 10.5-Year Analysis of Susceptibilities of Candida Species to Fluconazole and Voriconazole as Determined by CLSI Standardized Disk Diffusion, Journal of Clinical Microbiology, vol.48, issue.4, pp.1366-1377, 1997.
DOI : 10.1128/JCM.02117-09

M. Pfaller, S. Messer, R. Hollis, L. Boyken, and S. Tendolkar, Variation in Susceptibility of Bloodstream Isolates of Candida glabrata to Fluconazole According to Patient Age and Geographic Location, Journal of Clinical Microbiology, vol.41, issue.5, pp.3185-3190, 2001.
DOI : 10.1128/JCM.41.5.2176-2179.2003

S. Ruan, C. Chu, and P. Hsueh, In Vitro Susceptibilities of Invasive Isolates of Candida Species: Rapid Increase in Rates of Fluconazole Susceptible-Dose Dependent Candida glabrata Isolates, Antimicrobial Agents and Chemotherapy, vol.52, issue.8, pp.2919-2922, 2008.
DOI : 10.1128/AAC.00323-08

I. Castano, S. Pan, M. Zupancic, C. Hennequin, and B. Dujon, Telomere length control and transcriptional regulation of subtelomeric adhesins in Candida glabrata, Molecular Microbiology, vol.11, issue.4, pp.1246-1258, 2005.
DOI : 10.1111/j.1365-2958.2004.04465.x

B. Cormack, N. Ghori, and S. Falkow, An Adhesin of the Yeast Pathogen Candida glabrata Mediating Adherence to Human Epithelial Cells, Science, vol.285, issue.5427, pp.578-582, 1999.
DOI : 10.1126/science.285.5427.578

P. De-groot, E. Kraneveld, Q. Yin, H. Dekker, and U. Gross, The Cell Wall of the Human Pathogen Candida glabrata: Differential Incorporation of Novel Adhesin-Like Wall Proteins, Eukaryotic Cell, vol.7, issue.11, pp.1951-1964, 2008.
DOI : 10.1128/EC.00284-08

A. De-las-penas, S. Pan, I. Castano, J. Alder, and R. Cregg, Virulence-related surface glycoproteins in the yeast pathogen Candida glabrata are encoded in subtelomeric clusters and subject to RAP1- and SIR-dependent transcriptional silencing, Genes & Development, vol.17, issue.18, pp.2245-2258, 2003.
DOI : 10.1101/gad.1121003

R. Domergue, I. Castano, D. Las-penas, A. Zupancic, M. Lockatell et al., Nicotinic Acid Limitation Regulates Silencing of Candida Adhesins During UTI, Science, vol.308, issue.5723, pp.866-870, 2005.
DOI : 10.1126/science.1108640

R. Kaur, R. Domergue, M. Zupancic, and B. Cormack, A yeast by any other name: Candida glabrata and its interaction with the host, Current Opinion in Microbiology, vol.8, issue.4, pp.378-384, 2005.
DOI : 10.1016/j.mib.2005.06.012

R. Kaur, B. Ma, and B. Cormack, A family of glycosylphosphatidylinositol-linked aspartyl proteases is required for virulence of Candida glabrata, Proceedings of the National Academy of Sciences, vol.3, issue.14-15, pp.7628-7633, 2007.
DOI : 10.1016/S1286-4579(01)01496-4

S. Brunke, K. Seider, R. Almeida, A. Heyken, and C. Fleck, tryptophan-based pigment production via the Ehrlich pathway, Molecular Microbiology, vol.68, issue.1, pp.25-47, 2010.
DOI : 10.1111/j.1365-2958.2010.07052.x

A. Roetzer, N. Gratz, P. Kovarik, and C. Schuller, survival during phagocytosis, Cellular Microbiology, vol.16, issue.Part 19, pp.199-216, 2010.
DOI : 10.1111/j.1462-5822.2009.01391.x

K. Seider, S. Brunke, L. Schild, N. Jablonowski, and D. Wilson, The Facultative Intracellular Pathogen Candida glabrata Subverts Macrophage Cytokine Production and Phagolysosome Maturation, The Journal of Immunology, vol.187, issue.6, pp.3072-3086, 2011.
DOI : 10.4049/jimmunol.1003730

M. Rai, S. Balusu, N. Gorityala, L. Dandu, and R. Kaur, Functional Genomic Analysis of Candida glabrata-Macrophage Interaction: Role of Chromatin Remodeling in Virulence, PLoS Pathogens, vol.8, issue.8, p.1002863, 2012.
DOI : 10.1371/journal.ppat.1002863.s017

M. Kamran, A. Calcagno, H. Findon, E. Bignell, and M. Jones, Inactivation of Transcription Factor Gene ACE2 in the Fungal Pathogen Candida glabrata Results in Hypervirulence, Eukaryotic Cell, vol.3, issue.2, pp.546-552, 2004.
DOI : 10.1128/EC.3.2.546-552.2004

K. Izumikawa, H. Kakeya, H. Tsai, B. Grimberg, and J. Bennett, Function ofCandida glabrata ABC transporter gene,PDH1, Yeast, vol.285, issue.3, pp.249-261, 2003.
DOI : 10.1002/yea.962

H. Miyazaki, Y. Miyazaki, A. Geber, T. Parkinson, and C. Hitchcock, Fluconazole resistance associated with drug efflux and increased transcription of a drug transporter gene, PDH1, in Candida glabrata, Antimicrob Agents Chemother, vol.42, pp.1695-1701, 1998.

D. Sanglard, F. Ischer, D. Calabrese, P. Majcherczyk, and J. Bille, The ATP binding cassette transporter gene CgCDR1 from Candida glabrata is involved in the resistance of clinical isolates to azole antifungal agents, Antimicrob Agents Chemother, vol.43, pp.2753-2765, 1999.

J. Thakur, H. Arthanari, F. Yang, S. Pan, and X. Fan, A nuclear receptor-like pathway regulating multidrug resistance in fungi, Nature, vol.13, issue.7187, pp.604-609, 2008.
DOI : 10.1038/nature06836

J. Vermitsky, K. Earhart, W. Smith, R. Homayouni, and T. Edlind, Pdr1 regulates multidrug resistance in Candida glabrata: gene disruption and genome-wide expression studies, Molecular Microbiology, vol.28, issue.3, pp.704-722, 2006.
DOI : 10.1128/AAC.48.10.3773-3781.2004

S. Brun, T. Berges, P. Poupard, C. Vauzelle-moreau, and G. Renier, Mechanisms of Azole Resistance in Petite Mutants of Candida glabrata, Antimicrobial Agents and Chemotherapy, vol.48, issue.5, pp.1788-1796, 2004.
DOI : 10.1128/AAC.48.5.1788-1796.2004

URL : https://hal.archives-ouvertes.fr/hal-00084030

H. Nakayama, K. Tanabe, M. Bard, W. Hodgson, and S. Wu, The Candida glabrata putative sterol transporter gene CgAUS1 protects cells against azoles in the presence of serum, Journal of Antimicrobial Chemotherapy, vol.60, issue.6, pp.1264-1272, 2007.
DOI : 10.1093/jac/dkm321

M. Nagi, K. Tanabe, K. Ueno, H. Nakayama, and T. Aoyama, sterol scavenging mechanism, mediated by the ATP-binding cassette transporter Aus1p, is regulated by iron limitation, Molecular Microbiology, vol.277, issue.2, pp.371-381, 2013.
DOI : 10.1111/mmi.12189

T. Miyazaki, S. Yamauchi, T. Inamine, Y. Nagayoshi, and T. Saijo, Roles of Calcineurin and Crz1 in Antifungal Susceptibility and Virulence of Candida glabrata, Antimicrobial Agents and Chemotherapy, vol.54, issue.4, pp.1639-1643, 2010.
DOI : 10.1128/AAC.01364-09

D. Diekema, S. Arbefeville, L. Boyken, J. Kroeger, and M. Pfaller, The changing epidemiology of healthcare-associated candidemia over three decades, Diagnostic Microbiology and Infectious Disease, vol.73, issue.1, pp.45-48, 2012.
DOI : 10.1016/j.diagmicrobio.2012.02.001

D. Perlin, Current perspectives on echinocandin class drugs, Future Microbiology, vol.6, issue.4, pp.441-457, 2011.
DOI : 10.2217/fmb.11.19

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3913534

D. Perlin, Resistance to echinocandin-class antifungal drugs, Drug Resistance Updates, vol.10, issue.3, pp.121-130, 2007.
DOI : 10.1016/j.drup.2007.04.002

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2696280

S. Singh-babak, T. Babak, S. Diezmann, J. Hill, and J. Xie, Global Analysis of the Evolution and Mechanism of Echinocandin Resistance in Candida glabrata, PLoS Pathogens, vol.18, issue.Pt 6, 2012.
DOI : 10.1371/journal.ppat.1002718.s007

S. Katiyar, A. Alastruey-izquierdo, K. Healey, M. Johnson, and D. Perlin, Fks1 and Fks2 Are Functionally Redundant but Differentially Regulated in Candida glabrata: Implications for Echinocandin Resistance, Antimicrobial Agents and Chemotherapy, vol.56, issue.12, pp.6304-6309, 2012.
DOI : 10.1128/AAC.00813-12

M. Schuetzer-muehlbauer, B. Willinger, G. Krapf, S. Enzinger, and E. Presterl, The Candida albicans Cdr2p ATP-binding cassette (ABC) transporter confers resistance to caspofungin, Molecular Microbiology, vol.418, issue.1, pp.225-235, 2003.
DOI : 10.1046/j.1365-2958.2003.03430.x

S. Singh, N. Robbins, A. Zaas, W. Schell, and J. Perfect, Hsp90 Governs Echinocandin Resistance in the Pathogenic Yeast Candida albicans via Calcineurin, PLoS Pathogens, vol.9, issue.7, p.1000532, 2009.
DOI : 10.1371/journal.ppat.1000532.s006

B. Alexander, M. Johnson, C. Pfeiffer, C. Jimenez-ortigosa, and J. Catania, Increasing Echinocandin Resistance in Candida glabrata: Clinical Failure Correlates With Presence of FKS Mutations and Elevated Minimum Inhibitory Concentrations, Clinical Infectious Diseases, vol.56, issue.12, pp.1724-1732, 2013.
DOI : 10.1093/cid/cit136

B. Alexander, M. Johnson, C. Pfeiffer, C. Jimenez-ortigosa, and J. Catania, Increasing Echinocandin Resistance in Candida glabrata: Clinical Failure Correlates With Presence of FKS Mutations and Elevated Minimum Inhibitory Concentrations, Clinical Infectious Diseases, vol.56, issue.12, pp.1724-1732, 2013.
DOI : 10.1093/cid/cit136

M. Costanzo, A. Baryshnikova, J. Bellay, Y. Kim, and E. Spear, The Genetic Landscape of a Cell, Science, vol.4, issue.11, pp.425-431, 2010.
DOI : 10.1038/nchembio.120

G. Giaever, A. Chu, L. Ni, C. Connelly, and L. Riles, Functional profiling of the Saccharomyces cerevisiae genome, Nature, vol.57, issue.6896, pp.387-391, 2002.
DOI : 10.1073/pnas.95.25.14863

M. Hillenmeyer, E. Ericson, R. Davis, C. Nislow, and D. Koller, Systematic analysis of genome-wide fitness data in yeast reveals novel gene function and drug action, Genome Biology, vol.11, issue.3, p.30, 2010.
DOI : 10.1186/gb-2010-11-3-r30

M. Hillenmeyer, E. Fung, J. Wildenhain, S. Pierce, and S. Hoon, The Chemical Genomic Portrait of Yeast: Uncovering a Phenotype for All Genes, Science, vol.2, issue.4, pp.362-365, 2008.
DOI : 10.1038/sj.tpj.6500116

A. Parsons, R. Brost, H. Ding, Z. Li, and C. Zhang, Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways, Nature Biotechnology, vol.22, issue.1, pp.62-69, 2004.
DOI : 10.1038/nbt919

O. Ryan, R. Shapiro, C. Kurat, D. Mayhew, and A. Baryshnikova, Global Gene Deletion Analysis Exploring Yeast Filamentous Growth, Science, vol.20, issue.4, pp.1353-1356, 2012.
DOI : 10.1038/nbt.1832

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.297.3469

A. Tong, G. Lesage, G. Bader, H. Ding, and H. Xu, Global Mapping of the Yeast Genetic Interaction Network, Science, vol.303, issue.5659, pp.808-813, 2004.
DOI : 10.1126/science.1091317

E. Winzeler, D. Shoemaker, A. Astromoff, H. Liang, and K. Anderson, Functional Characterization of the S. cerevisiae Genome by Gene Deletion and Parallel Analysis, Science, vol.285, issue.5429, pp.901-906, 1999.
DOI : 10.1126/science.285.5429.901

S. Noble, S. French, L. Kohn, V. Chen, and A. Johnson, Systematic screens of a Candida albicans homozygous deletion library decouple morphogenetic switching and pathogenicity, Nature Genetics, vol.25, issue.7, pp.590-598, 2010.
DOI : 10.1038/ng.605

S. Noble and A. Johnson, Strains and Strategies for Large-Scale Gene Deletion Studies of the Diploid Human Fungal Pathogen Candida albicans, Eukaryotic Cell, vol.4, issue.2, pp.298-309, 2005.
DOI : 10.1128/EC.4.2.298-309.2005

T. Roemer, B. Jiang, J. Davison, T. Ketela, and K. Veillette, Large-scale essential gene identification in Candida albicans and applications to antifungal drug discovery, Molecular Microbiology, vol.285, issue.1, pp.167-181, 2003.
DOI : 10.1046/j.1365-2958.2003.03697.x

O. Liu, C. Chun, E. Chow, C. Chen, and H. Madhani, Systematic Genetic Analysis of Virulence in the Human Fungal Pathogen Cryptococcus neoformans, Cell, vol.135, issue.1, pp.174-188, 2008.
DOI : 10.1016/j.cell.2008.07.046

B. Dujon, D. Sherman, G. Fischer, P. Durrens, and S. Casaregola, Genome evolution in yeasts, Nature, vol.316, issue.6995, pp.35-44, 2004.
DOI : 10.1093/nar/gkg056

URL : https://hal.archives-ouvertes.fr/hal-00104411

M. Marcet-houben and T. Gabaldon, The Tree versus the Forest: The Fungal Tree of Life and the Topological Diversity within the Yeast Phylome, PLoS ONE, vol.301, issue.2, p.4357, 2009.
DOI : 10.1371/journal.pone.0004357.s010

O. Reuss, A. Vik, R. Kolter, and J. Morschhä-user, The SAT1 flipper, an optimized tool for gene disruption in Candida albicans, Gene, vol.341, pp.119-127, 2004.
DOI : 10.1016/j.gene.2004.06.021

J. Shen, W. Guo, and J. Köhler, CaNAT1, a Heterologous Dominant Selectable Marker for Transformation of Candida albicans and Other Pathogenic Candida Species, Infection and Immunity, vol.73, issue.2, pp.1239-1242, 2005.
DOI : 10.1128/IAI.73.2.1239-1242.2005

A. Brand, D. Maccallum, A. Brown, N. Gow, and F. Odds, Ectopic Expression of URA3 Can Influence the Virulence Phenotypes and Proteome of Candida albicans but Can Be Overcome by Targeted Reintegration of URA3 at the RPS10 Locus, Eukaryotic Cell, vol.3, issue.4, pp.900-909, 2004.
DOI : 10.1128/EC.3.4.900-909.2004

J. Lay, L. Henry, J. Clifford, Y. Koltin, and C. Bulawa, Altered expression of selectable marker URA3 in gene-disrupted Candida albicans strains complicates interpretation of virulence studies, Infect Immun, vol.66, pp.5301-5306, 1998.

I. Jacobsen, S. Brunke, K. Seider, T. Schwarzmuller, and A. Firon, Candida glabrata Persistence in Mice Does Not Depend on Host Immunosuppression and Is Unaffected by Fungal Amino Acid Auxotrophy, Infection and Immunity, vol.78, issue.3, pp.1066-1077, 2010.
DOI : 10.1128/IAI.01244-09

K. Ueno, J. Uno, H. Nakayama, K. Sasamoto, and Y. Mikami, Development of a Highly Efficient Gene Targeting System Induced by Transient Repression of YKU80 Expression in Candida glabrata, Eukaryotic Cell, vol.6, issue.7, pp.1239-1247, 2007.
DOI : 10.1128/EC.00414-06

G. Boguslawski, PBS2, a yeast gene encoding a putative protein kinase, interacts with the RAS2 pathway and affects osmotic sensitivity of Saccharomyces cerevisiae, Journal of General Microbiology, vol.138, issue.11, pp.2425-2432, 1992.
DOI : 10.1099/00221287-138-11-2425

D. Sanglard, F. Ischer, and J. Bille, Role of ATP-Binding-Cassette Transporter Genes in High-Frequency Acquisition of Resistance to Azole Antifungals in Candida glabrata, Antimicrobial Agents and Chemotherapy, vol.45, issue.4, pp.1174-1183, 2001.
DOI : 10.1128/AAC.45.4.1174-1183.2001

J. Vermitsky and T. Edlind, Azole Resistance in Candida glabrata: Coordinate Upregulation of Multidrug Transporters and Evidence for a Pdr1-Like Transcription Factor, Antimicrobial Agents and Chemotherapy, vol.48, issue.10, pp.3773-3781, 2004.
DOI : 10.1128/AAC.48.10.3773-3781.2004

J. Cota, J. Grabinski, R. Talbert, D. Burgess, and P. Rogers, Increases in SLT2 Expression and Chitin Content Are Associated with Incomplete Killing of Candida glabrata by Caspofungin, Antimicrobial Agents and Chemotherapy, vol.52, issue.3, pp.1144-1146, 2008.
DOI : 10.1128/AAC.01542-07

C. Reinoso-martin, C. Schuller, M. Schuetzer-muehlbauer, and K. Kuchler, The Yeast Protein Kinase C Cell Integrity Pathway Mediates Tolerance to the Antifungal Drug Caspofungin through Activation of Slt2p Mitogen-Activated Protein Kinase Signaling, Eukaryotic Cell, vol.2, issue.6, pp.1200-1210, 2003.
DOI : 10.1128/EC.2.6.1200-1210.2003

S. Ferrari, F. Ischer, D. Calabrese, B. Posteraro, and M. Sanguinetti, Gain of Function Mutations in CgPDR1 of Candida glabrata Not Only Mediate Antifungal Resistance but Also Enhance Virulence, PLoS Pathogens, vol.1, issue.1, p.1000268, 2009.
DOI : 10.1371/journal.ppat.1000268.s008

R. St-onge, R. Mani, J. Oh, M. Proctor, and E. Fung, Systematic pathway analysis using high-resolution fitness profiling of combinatorial gene deletions, Nature Genetics, vol.7, issue.2, pp.199-206, 2007.
DOI : 10.1038/ng1948

C. Csank and K. Haynes, displays pseudohyphal growth, FEMS Microbiology Letters, vol.189, issue.1, pp.115-120, 2000.
DOI : 10.1111/j.1574-6968.2000.tb09216.x

P. Vandeputte, G. Tronchin, T. Berges, C. Hennequin, and D. Chabasse, Reduced Susceptibility to Polyenes Associated with a Missense Mutation in the ERG6 Gene in a Clinical Isolate of Candida glabrata with Pseudohyphal Growth, Antimicrobial Agents and Chemotherapy, vol.51, issue.3, pp.982-990, 2007.
DOI : 10.1128/AAC.01510-06

URL : https://hal.archives-ouvertes.fr/hal-00273771

J. Finkel and A. Mitchell, Genetic control of Candida albicans biofilm development, Nature Reviews Microbiology, vol.45, issue.2, pp.109-118, 2011.
DOI : 10.1038/nrmicro2475

C. Nobile, J. Nett, A. Hernday, O. Homann, and J. Deneault, Biofilm Matrix Regulation by Candida albicans Zap1, PLoS Biology, vol.281, issue.6, p.1000133, 2009.
DOI : 10.1371/journal.pbio.1000133.s007

URL : http://doi.org/10.1371/journal.pbio.1000133

M. Riera, E. Mogensen, C. Enfert, and G. Janbon, New regulators of biofilm development in Candida glabrata, Research in Microbiology, vol.163, issue.4, pp.297-307, 2012.
DOI : 10.1016/j.resmic.2012.02.005

K. Honraet, E. Goetghebeur, and H. Nelis, Comparison of three assays for the quantification of Candida biomass in suspension and CDC reactor grown biofilms, Journal of Microbiological Methods, vol.63, issue.3, pp.287-295, 2005.
DOI : 10.1016/j.mimet.2005.03.014

I. Iraqui, S. Garcia-sanchez, S. Aubert, F. Dromer, and J. Ghigo, The Yak1p kinase controls expression of adhesins and biofilm formation in Candida glabrata in a Sir4p-dependent pathway, Molecular Microbiology, vol.413, issue.4, pp.1259-1271, 2005.
DOI : 10.1111/j.1365-2958.2004.04475.x

M. Pfaller, M. Castanheira, S. Lockhart, A. Ahlquist, and S. Messer, Frequency of Decreased Susceptibility and Resistance to Echinocandins among Fluconazole-Resistant Bloodstream Isolates of Candida glabrata, Journal of Clinical Microbiology, vol.50, issue.4, pp.1199-1203, 2012.
DOI : 10.1128/JCM.06112-11

L. Cowen, The evolution of fungal drug resistance: modulating the trajectory from genotype to phenotype, Nature Reviews Microbiology, vol.130, issue.3, pp.187-198, 2008.
DOI : 10.1038/nrmicro1835

Z. Khan, S. Ahmad, I. Obaid, N. Sweih, and L. Joseph, Vaginal Isolates in a Case of Recurrent Vaginitis, Journal of Chemotherapy, vol.12, issue.4, pp.488-491, 2008.
DOI : 10.1111/j.1600-0897.2006.00450.x

M. Krogh-madsen, M. Arendrup, L. Heslet, and J. Knudsen, Amphotericin B and Caspofungin Resistance in Candida glabrata Isolates Recovered from a Critically Ill Patient, Clinical Infectious Diseases, vol.42, issue.7, pp.938-944, 2006.
DOI : 10.1086/500939

M. Lussier, A. Sdicu, A. Camirand, and H. Bussey, Functional characterization of the YUR1, KTR1, and KTR2 genes as members of the yeast KRE2/ MNT1 mannosyltransferase gene family, J Biol Chem, vol.271, pp.11001-11008, 1996.

C. Onyewu, J. Blankenship, D. Poeta, M. Heitman, and J. , Ergosterol Biosynthesis Inhibitors Become Fungicidal when Combined with Calcineurin Inhibitors against Candida albicans, Candida glabrata, and Candida krusei, Antimicrobial Agents and Chemotherapy, vol.47, issue.3, pp.956-964, 2003.
DOI : 10.1128/AAC.47.3.956-964.2003

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC149324

M. Tscherner, E. Stappler, D. Hnisz, and K. Kuchler, The histone acetyltransferase Hat1 facilitates DNA damage repair and morphogenesis in Candida albicans, Mol Microbiol

T. Miyazaki, T. Inamine, S. Yamauchi, Y. Nagayoshi, and T. Saijo, Role of the Slt2 mitogen-activated protein kinase pathway in cell wall integrity and virulence in Candida glabrata, FEMS Yeast Research, vol.10, issue.3, pp.343-352, 2010.
DOI : 10.1111/j.1567-1364.2010.00611.x

W. Liu, J. Tan, J. Sun, Z. Xu, and M. Li, Invasive candidiasis in intensive care units in China: in vitro antifungal susceptibility in the China-SCAN study, Journal of Antimicrobial Chemotherapy, vol.69, issue.1, pp.162-167, 2014.
DOI : 10.1093/jac/dkt330

I. Castano, R. Kaur, S. Pan, R. Cregg, P. Ade et al., Tn7-Based Genome-Wide Random Insertional Mutagenesis of Candida glabrata, Genome Research, vol.13, issue.5, pp.905-915, 2003.
DOI : 10.1101/gr.848203

E. Kojic and R. Darouiche, Candida Infections of Medical Devices, Clinical Microbiology Reviews, vol.17, issue.2, pp.255-267, 2004.
DOI : 10.1128/CMR.17.2.255-267.2004

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC387407

A. Friedel, B. Pike, and S. Gasser, ATR/Mec1: coordinating fork stability and repair, Current Opinion in Cell Biology, vol.21, issue.2, pp.237-244, 2009.
DOI : 10.1016/j.ceb.2009.01.017

P. Jorgensen, B. Nelson, M. Robinson, Y. Chen, and B. Andrews, Highresolution genetic mapping with ordered arrays of Saccharomyces cerevisiae deletion mutants, Genetics, vol.162, pp.1091-1099, 2002.

S. Bidlingmaier, E. Weiss, C. Seidel, D. Drubin, and M. Snyder, The Cbk1p Pathway Is Important for Polarized Cell Growth and Cell Separation in Saccharomyces cerevisiae, Molecular and Cellular Biology, vol.21, issue.7, pp.2449-2462, 2001.
DOI : 10.1128/MCB.21.7.2449-2462.2001

W. Racki, A. Becam, F. Nasr, and C. Herbert, Cbk1p, a protein similar to the human myotonic dystrophy kinase, is essential for normal morphogenesis in Saccharomyces cerevisiae, The EMBO Journal, vol.19, issue.17, pp.4524-4532, 2000.
DOI : 10.1093/emboj/19.17.4524

N. Bharucha, Y. Chabrier-rosello, T. Xu, C. Johnson, and S. Sobczynski, A Large-Scale Complex Haploinsufficiency-Based Genetic Interaction Screen in Candida albicans: Analysis of the RAM Network during Morphogenesis, PLoS Genetics, vol.16, issue.4, p.1002058, 2011.
DOI : 10.1371/journal.pgen.1002058.s002

M. Mcnemar and W. Fonzi, Conserved Serine/Threonine Kinase Encoded by CBK1 Regulates Expression of Several Hypha-Associated Transcripts and Genes Encoding Cell Wall Proteins in Candida albicans, Journal of Bacteriology, vol.184, issue.7, pp.2058-2061, 2002.
DOI : 10.1128/JB.184.7.2058-2061.2002

M. Legrand, P. Lephart, A. Forche, F. Mueller, and T. Walsh, Homozygosity at the MTL locus in clinical strains of Candida albicans: karyotypic rearrangements and tetraploid formation???, Molecular Microbiology, vol.8, issue.5, pp.1451-1462, 2004.
DOI : 10.1111/j.1365-2958.2004.04068.x

P. Gutierrez-escribano, U. Zeidler, M. Suarez, S. Bachellier-bassi, and A. Clemente-blanco, The NDR/LATS Kinase Cbk1 Controls the Activity of the Transcriptional Regulator Bcr1 during Biofilm Formation in Candida albicans, The NDR/LATS kinase Cbk1 controls the activity of the transcriptional regulator Bcr1 during biofilm formation in Candida albicans, p.1002683, 2012.
DOI : 10.1371/journal.ppat.1002683.t002

H. Lavoie, H. Hogues, and M. Whiteway, Rearrangements of the transcriptional regulatory networks of metabolic pathways in fungi, Current Opinion in Microbiology, vol.12, issue.6, pp.655-663, 2009.
DOI : 10.1016/j.mib.2009.09.015

H. Li and A. Johnson, Evolution of Transcription Networks ??? Lessons from Yeasts, Current Biology, vol.20, issue.17, pp.746-753, 2010.
DOI : 10.1016/j.cub.2010.06.056

J. Bennett, K. Izumikawa, and K. Marr, Mechanism of Increased Fluconazole Resistance in Candida glabrata during Prophylaxis, Antimicrobial Agents and Chemotherapy, vol.48, issue.5, pp.1773-1777, 2004.
DOI : 10.1128/AAC.48.5.1773-1777.2004

A. Borst, M. Raimer, D. Warnock, C. Morrison, and B. Arthington-skaggs, Rapid Acquisition of Stable Azole Resistance by Candida glabrata Isolates Obtained before the Clinical Introduction of Fluconazole, Antimicrobial Agents and Chemotherapy, vol.49, issue.2, pp.783-787, 2005.
DOI : 10.1128/AAC.49.2.783-787.2005

J. Bouchara, R. Zouhair, L. Boudouil, S. Renier, G. Filmon et al., In-vivo selection of an azole-resistant petite mutant of Candida glabrata, Journal of Medical Microbiology, vol.49, issue.11, pp.977-984, 2000.
DOI : 10.1099/0022-1317-49-11-977

C. Costa, C. Pires, T. Cabrito, A. Renaudin, and M. Ohno, Candida glabrata Drug:H+ Antiporter CgQdr2 Confers Imidazole Drug Resistance, Being Activated by Transcription Factor CgPdr1, Antimicrobial Agents and Chemotherapy, vol.57, issue.7, pp.3159-3167, 2013.
DOI : 10.1128/AAC.00811-12

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3697362

J. Morschhä-user, K. Barker, T. Liu, B. Bla, and R. Homayouni, The Transcription Factor Mrr1p Controls Expression of the MDR1 Efflux Pump and Mediates Multidrug Resistance in Candida albicans, PLoS Pathogens, vol.18, issue.11, p.164, 2007.
DOI : 10.1371/journal.ppat.0030164.st005

G. Lesage, A. Sdicu, P. Menard, J. Shapiro, and S. Hussein, Analysis of ??-1,3-Glucan Assembly in Saccharomyces cerevisiae Using a Synthetic Interaction Network and Altered Sensitivity to Caspofungin, Genetics, vol.167, issue.1, pp.35-49, 2004.
DOI : 10.1534/genetics.167.1.35

D. Xu, B. Jiang, T. Ketela, S. Lemieux, and K. Veillette, Genome-Wide Fitness Test and Mechanism-of-Action Studies of Inhibitory Compounds in Candida albicans, PLoS Pathogens, vol.17, issue.6, p.92, 2007.
DOI : 10.1371/journal.ppat.0030092.st002

R. Ben-ami and D. Kontoyiannis, Resistance to echinocandins comes at a cost, Virulence, vol.3, issue.1, pp.95-97, 2012.
DOI : 10.4161/viru.3.1.18886

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3337155

A. Sussman, K. Huss, L. Chio, S. Heidler, and M. Shaw, Discovery of Cercosporamide, a Known Antifungal Natural Product, as a Selective Pkc1 Kinase Inhibitor through High-Throughput Screening, Eukaryotic Cell, vol.3, issue.4, pp.932-943, 2004.
DOI : 10.1128/EC.3.4.932-943.2004

K. Lee, D. Maccallum, M. Jacobsen, L. Walker, and F. Odds, Elevated Cell Wall Chitin in Candida albicans Confers Echinocandin Resistance In Vivo, Antimicrobial Agents and Chemotherapy, vol.56, issue.1, pp.208-217, 2012.
DOI : 10.1128/AAC.00683-11

L. Walker, N. Gow, and C. Munro, Elevated Chitin Content Reduces the Susceptibility of Candida Species to Caspofungin, Antimicrobial Agents and Chemotherapy, vol.57, issue.1, pp.146-154, 2013.
DOI : 10.1128/AAC.01486-12

W. Steinbach, R. Cramer, J. Perfect, B. Henn, C. Nielsen et al., Calcineurin Inhibition or Mutation Enhances Cell Wall Inhibitors against Aspergillus fumigatus, Antimicrobial Agents and Chemotherapy, vol.51, issue.8, pp.2979-2981, 2007.
DOI : 10.1128/AAC.01394-06

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1932494

F. Roelants, D. Breslow, A. Muir, J. Weissman, and J. Thorner, Protein kinase Ypk1 phosphorylates regulatory proteins Orm1 and Orm2 to control sphingolipid homeostasis in Saccharomyces cerevisiae, Proceedings of the National Academy of Sciences, vol.31, issue.4, pp.19222-19227, 2011.
DOI : 10.1128/MCB.00403-10

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3228448

M. Inagaki, T. Schmelzle, K. Yamaguchi, K. Irie, and M. Hall, PDK1 Homologs Activate the Pkc1???Mitogen-Activated Protein Kinase Pathway in Yeast, Molecular and Cellular Biology, vol.19, issue.12, pp.8344-8352, 1999.
DOI : 10.1128/MCB.19.12.8344

F. Roelants, P. Torrance, N. Bezman, and J. Thorner, Pkh1 and Pkh2 Differentially Phosphorylate and Activate Ypk1 and Ykr2 and Define Protein Kinase Modules Required for Maintenance of Cell Wall Integrity, Molecular Biology of the Cell, vol.13, issue.9, pp.3005-3028, 2002.
DOI : 10.1091/mbc.E02-04-0201

R. Kaur, I. Castano, and B. Cormack, Functional Genomic Analysis of Fluconazole Susceptibility in the Pathogenic Yeast Candida glabrata: Roles of Calcium Signaling and Mitochondria, Antimicrobial Agents and Chemotherapy, vol.48, issue.5, pp.1600-1613, 2004.
DOI : 10.1128/AAC.48.5.1600-1613.2004

N. Wiederhold, D. Kontoyiannis, R. Prince, and R. Lewis, Attenuation of the Activity of Caspofungin at High Concentrations against Candida albicans: Possible Role of Cell Wall Integrity and Calcineurin Pathways, Antimicrobial Agents and Chemotherapy, vol.49, issue.12, pp.5146-5148, 2005.
DOI : 10.1128/AAC.49.12.5146-5148.2005

J. Jansen, A. Wanless, C. Seidel, and E. Weiss, Cbk1 Regulation of the RNA-Binding Protein Ssd1 Integrates Cell Fate with Translational Control, Current Biology, vol.19, issue.24, pp.2114-2120, 2009.
DOI : 10.1016/j.cub.2009.10.071

K. Gank, M. Yeaman, S. Kojima, N. Yount, and H. Park, SSD1 Is Integral to Host Defense Peptide Resistance in Candida albicans, Eukaryotic Cell, vol.7, issue.8, pp.1318-1327, 2008.
DOI : 10.1128/EC.00402-07

A. Colman-lerner, T. Chin, and R. Brent, Yeast Cbk1 and Mob2 Activate Daughter-Specific Genetic Programs to Induce Asymmetric Cell Fates, Cell, vol.107, issue.6, pp.739-750, 2001.
DOI : 10.1016/S0092-8674(01)00596-7

URL : http://doi.org/10.1016/s0092-8674(01)00596-7

M. Kaeberlein and L. Guarente, Saccharomyces cerevisiae MPT5 and SSD1 function in parallel pathways to promote cell wall integrity, Genetics, vol.160, pp.83-95, 2002.

C. Kurischko, V. Kuravi, C. Herbert, and F. Luca, Nucleocytoplasmic shuttling of Ssd1 defines the destiny of its bound mRNAs, Molecular Microbiology, vol.16, issue.3, pp.831-849, 2011.
DOI : 10.1111/j.1365-2958.2011.07731.x

Y. Sun, R. Taniguchi, D. Tanoue, T. Yamaji, and H. Takematsu, Sli2 (Ypk1), a Homologue of Mammalian Protein Kinase SGK, Is a Downstream Kinase in the Sphingolipid-Mediated Signaling Pathway of Yeast, Molecular and Cellular Biology, vol.20, issue.12, pp.4411-4419, 2000.
DOI : 10.1128/MCB.20.12.4411-4419.2000

F. Roelants, A. Baltz, A. Trott, S. Fereres, and J. Thorner, A protein kinase network regulates the function of aminophospholipid flippases, Proceedings of the National Academy of Sciences, vol.1791, issue.7, pp.34-39, 2010.
DOI : 10.1016/j.devcel.2007.09.014

L. Parks, S. Smith, and J. Crowley, Biochemical and physiological effects of sterol alterations in yeast???A review, Lipids, vol.163, issue.3, pp.227-230, 1995.
DOI : 10.1007/BF02537825

E. Lamping, J. Luckl, F. Paltauf, S. Henry, and S. Kohlwein, Isolation and characterization of a mutant of Saccharomyces cerevisiae with pleiotropic deficiencies in transcriptional activation and repression, Genetics, vol.137, pp.55-65, 1994.

M. Pfaller, D. Neofytos, D. Diekema, N. Azie, and H. Meier-kriesche, Epidemiology and outcomes of candidemia in 3648 patients: data from the Prospective Antifungal Therapy (PATH Alliance(R)) registry, 2004.

J. Morschhauser, Regulation of multidrug resistance in pathogenic fungi, Fungal Genetics and Biology, vol.47, issue.2, pp.94-106, 2010.
DOI : 10.1016/j.fgb.2009.08.002

C. Kaiser, S. Michaelis, and A. Mitchell, Methods in yeast genetics. A laboratory course manual, 1994.

T. Gabaldon, Large-scale assignment of orthology: back to phylogenetics?, Genome Biology, vol.9, issue.10, p.235, 2008.
DOI : 10.1186/gb-2008-9-10-235

J. Huerta-cepas, S. Capella-gutierrez, L. Pryszcz, I. Denisov, and D. Kormes, PhylomeDB v3.0: an expanding repository of genome-wide collections of trees, alignments and phylogeny-based orthology and paralogy predictions, Nucleic Acids Research, vol.39, issue.Database, pp.556-560, 2011.
DOI : 10.1093/nar/gkq1109

P. Rice, I. Longden, and A. Bleasby, EMBOSS: The European Molecular Biology Open Software Suite, Trends in Genetics, vol.16, issue.6, pp.276-277, 2000.
DOI : 10.1016/S0168-9525(00)02024-2

V. Cabral, M. Chauvel, A. Firon, M. Legrand, and A. Nesseir, Modular Gene Over-expression Strategies for Candida albicans, Methods Mol Biol, vol.845, pp.227-244, 2012.
DOI : 10.1007/978-1-61779-539-8_15

M. Chauvel, A. Nesseir, V. Cabral, S. Znaidi, and S. Goyard, A Versatile Overexpression Strategy in the Pathogenic Yeast Candida albicans: Identification of Regulators of Morphogenesis and Fitness, PLoS ONE, vol.7, issue.9, p.45912, 2012.
DOI : 10.1371/journal.pone.0045912.s005

K. Kitada, E. Yamaguchi, and M. Arisawa, Isolation of a Candida glabrata centromere and its use in construction of plasmid vectors, Gene, vol.175, issue.1-2, pp.105-108, 1996.
DOI : 10.1016/0378-1119(96)00132-1

B. Cormack and S. Falkow, Efficient homologous and illegitimate recombination in the opportunistic yeast pathogen Candida glabrata, Genetics, vol.151, pp.979-987, 1999.

J. Rex, M. Pfaller, J. Galgiani, M. Bartlett, and A. Espinel-ingroff, Development of Interpretive Breakpoints for Antifungal Susceptibility Testing: Conceptual Framework and Analysis of In Vitro-In Vivo Correlation Data for Fluconazole, Itraconazole, and Candida Infections, Clinical Infectious Diseases, vol.24, issue.2, pp.235-247, 1997.
DOI : 10.1093/clinids/24.2.235

D. Sanglard, K. Kuchler, F. Ischer, J. Pagani, and M. Monod, Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters, Antimicrobial Agents and Chemotherapy, vol.39, issue.11, pp.2378-2386, 1995.
DOI : 10.1128/AAC.39.11.2378