C. H. Kirkpatrick, Chronic mucocutaneous candidiasis, The Pediatric Infectious Disease Journal, vol.20, issue.2, pp.197-206, 2001.
DOI : 10.1097/00006454-200102000-00017

A. Puel, S. Cypowyj, L. Marodi, L. Abel, C. Picard et al., Inborn errors of human IL-17 immunity underlie chronic mucocutaneous candidiasis, Current Opinion in Allergy and Clinical Immunology, vol.12, issue.6, pp.616-622, 2012.
DOI : 10.1097/ACI.0b013e328358cc0b

A. Gladiator, N. Wangler, K. Trautwein-weidner, and S. Leibundgut-landmann, Cutting Edge: IL-17-Secreting Innate Lymphoid Cells Are Essential for Host Defense against Fungal Infection, The Journal of Immunology, vol.190, issue.2, pp.521-525, 2013.
DOI : 10.4049/jimmunol.1202924

H. R. Conti, infections, The Journal of Experimental Medicine, vol.211, issue.10, pp.2075-2084, 2014.
DOI : 10.1111/imr.12036

S. W. Kashem, M. S. Riedl, C. Yao, C. N. Honda, L. Vulchanova et al., Nociceptive Sensory Fibers Drive Interleukin-23 Production from CD301b+ Dermal Dendritic Cells and Drive Protective Cutaneous Immunity, Immunity, vol.43, issue.3, pp.515-526, 2015.
DOI : 10.1016/j.immuni.2015.08.016

URL : http://dx.doi.org/10.1016/j.immuni.2015.09.015

N. Whibley, Antibody blockade of IL-17 family cytokines in immunity to acute murine oral mucosal candidiasis, Journal of Leukocyte Biology, vol.99, issue.6, pp.1153-1164, 2016.
DOI : 10.1189/jlb.4A0915-428R

K. Trautwein-weidner, A. Gladiator, S. Nur, P. Diethelm, and S. Leibundgut-landmann, IL-17-mediated antifungal defense in the oral mucosa is independent of neutrophils, Mucosal Immunology, vol.161, issue.2, pp.221-231, 2015.
DOI : 10.1128/AAC.45.11.3195-3197.2001

H. R. Conti, IL-17 Receptor Signaling in Oral Epithelial Cells Is Critical for Protection against Oropharyngeal Candidiasis, Cell Host & Microbe, vol.20, issue.5, pp.606-617, 2016.
DOI : 10.1016/j.chom.2016.10.001

A. R. Huppler, H. R. Conti, N. Hernandez-santos, T. Darville, P. S. Biswas et al., Role of Neutrophils in IL-17-Dependent Immunity to Mucosal Candidiasis, The Journal of Immunology, vol.192, issue.4, pp.1745-1752, 2014.
DOI : 10.4049/jimmunol.1302265

T. Zelante, Sensing of mammalian IL-17A regulates fungal adaptation and virulence, Nature Communications, vol.78, p.683, 2012.
DOI : 10.1038/ncomms1685

C. Pujol, The yeast Candida albicans has a clonal mode of reproduction in a population of infected human immunodeficiency viruspositive patients, Proc. Natl Acad. Sci. USA 90, pp.9456-9459, 1993.

M. Bougnoux, C. Pujol, D. Diogo, C. Bouchier, D. R. Soll et al., Mating is rare within as well as between clades of the human pathogen Candida albicans, Fungal Genetics and Biology, vol.45, issue.3, pp.221-231, 2008.
DOI : 10.1016/j.fgb.2007.10.008

A. J. Moorhouse, C. Rennison, M. Raza, D. Lilic, N. A. Gow et al., Clonal Strain Persistence of Candida albicans Isolates from Chronic Mucocutaneous Candidiasis Patients, PLOS ONE, vol.47, issue.2, p.145888, 2016.
DOI : 10.1371/journal.pone.0145888.s008

F. C. Odds, Molecular Phylogenetics of Candida albicans, Eukaryotic Cell, vol.6, issue.6, pp.1041-1052, 2007.
DOI : 10.1128/EC.00041-07

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1951527

D. M. Maccallum, Property Differences among the Four Major Candida albicans Strain Clades, Eukaryotic Cell, vol.8, issue.3, pp.373-387, 2009.
DOI : 10.1128/EC.00387-08

M. J. Marakalala, Differential Adaptation of Candida albicans In Vivo Modulates Immune Recognition by Dectin-1, PLoS Pathogens, vol.314, issue.4, p.1003315, 2013.
DOI : 10.1371/journal.ppat.1003315.s002

H. R. Conti, Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis, The Journal of Experimental Medicine, vol.67, issue.2, pp.299-311, 2009.
DOI : 10.1189/jlb.0904490

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2646568

S. Altmeier, A. Toska, F. Sparber, A. Teijeira, C. Halin et al., IL-1 Coordinates the Neutrophil Response to C. albicans in the Oral Mucosa, PLOS Pathogens, vol.125, issue.9, p.1005882, 2016.
DOI : 10.1371/journal.ppat.1005882.s009

D. Rahman, M. Mistry, S. Thavaraj, S. J. Challacombe, and J. Naglik, Murine model of concurrent oral and vaginal Candida albicans colonization to study epithelial host-pathogen interactions. Microbes Infect, pp.615-622, 2007.

B. Misme-aucouturier, M. Albassier, N. Alvarez-rueda, and P. Le-pape, ABSTRACT, Infection and Immunity, vol.85, issue.1, pp.807-823, 2016.
DOI : 10.1128/IAI.00807-16

B. Hebecker, J. R. Naglik, B. Hube, and I. Jacobsen, infections, Expert Review of Anti-infective Therapy, vol.12, issue.7, pp.867-879, 2014.
DOI : 10.1586/14787210.2014.916210

D. L. Moyes, Candidalysin is a fungal peptide toxin critical for mucosal infection, Nature, vol.16, issue.7597, pp.64-68, 2016.
DOI : 10.1038/nature17625

L. E. Cowen, D. Sanglard, S. J. Howard, P. D. Rogers, and D. S. Perlin, Mechanisms of antifungal drug resistance. Cold Spring Harb, Perspect. Med, vol.5, p.19752, 2015.

R. Loll, A. Feri, C. Enfert, and M. Legrand, Genome Integrity: Mechanisms and Contribution to Antifungal Resistance, Antifungals: From Genomics to Resistance and the Development of Novel Agents, pp.211-236, 2015.
DOI : 10.21775/9781910190012.10

M. G. Netea, strains by TLR4 and lectin recognition receptors, Medical Mycology, vol.48, issue.7, pp.897-903, 2010.
DOI : 10.3109/13693781003621575

C. B. Ford, The evolution of drug resistance in clinical isolates of Candida albicans, Elife, vol.4, p.662, 2015.

P. Schwarzenberger, IL-17 stimulates granulopoiesis in mice. use of an alternate, novel gene therapy-derived method for in vivo evaluation of cytokines, J. Immunol, vol.161, pp.6383-6389, 1998.

M. Laan, Neutrophil recruitment by human IL-17 via C-X-C chemokine release in the airways, J. Immunol, vol.162, pp.2347-2352, 1999.

M. Miyamoto, O. Prause, M. Sjostrand, M. Laan, J. Lotvall et al., Endogenous IL-17 as a Mediator of Neutrophil Recruitment Caused by Endotoxin Exposure in Mouse Airways, The Journal of Immunology, vol.170, issue.9, pp.4665-4672, 2003.
DOI : 10.4049/jimmunol.170.9.4665

F. Sparber and S. Leibundgut-landmann, Interleukin 17-Mediated Host Defense against Candida albicans, Pathogens, vol.162, issue.3, pp.606-619, 2015.
DOI : 10.1371/journal.ppat.1004276

URL : http://doi.org/10.3390/pathogens4030606

E. Bä-r, A Novel Th Cell Epitope of Candida albicans Mediates Protection from Fungal Infection, The Journal of Immunology, vol.188, issue.11, pp.5636-5643, 2012.
DOI : 10.4049/jimmunol.1200594

N. Hernandez-santos, A. R. Huppler, A. C. Peterson, S. A. Khader, K. C. Mckenna et al., Th17 cells confer long-term adaptive immunity to oral mucosal Candida albicans infections, Mucosal Immunology, vol.78, issue.5, pp.900-910, 2012.
DOI : 10.1038/mi.2012.128

K. Trautwein-weidner, Antigen-Specific Th17 Cells Are Primed by Distinct and Complementary Dendritic Cell Subsets in Oropharyngeal Candidiasis, PLOS Pathogens, vol.6, issue.10, p.1005164, 2015.
DOI : 10.1371/journal.ppat.1005164.s008

A. Dongari-bagtzoglou, H. Kashleva, and C. C. Villar, -infected oral epithelial cells, Medical Mycology, vol.42, issue.6, pp.531-541, 2004.
DOI : 10.1080/1369378042000193194

D. S. Thompson, P. L. Carlisle, and D. Kadosh, Coevolution of Morphology and Virulence in Candida Species, Eukaryotic Cell, vol.10, issue.9, pp.1173-1182, 2011.
DOI : 10.1128/EC.05085-11

S. M. Noble, S. French, L. A. Kohn, V. Chen, and A. D. Johnson, Systematic screens of a Candida albicans homozygous deletion library decouple morphogenetic switching and pathogenicity, Nature Genetics, vol.25, issue.7, pp.590-598, 2010.
DOI : 10.1038/ng.605

A. M. Gillum, E. Y. Tsay, and D. R. Kirsch, Isolation of the Candida albicans gene for orotidine-5?-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations, MGG Molecular & General Genetics, vol.180, issue.1, pp.179-182, 1984.
DOI : 10.1007/BF00328721

R. I. Lehrer and M. J. Cline, Interaction of Candida albicans with human leukocytes and serum, J. Bacteriol, vol.98, pp.996-1004, 1969.

R. Skowronski and D. Feldman, *, Endocrinology, vol.124, issue.4, pp.1965-1972, 1989.
DOI : 10.1210/endo-124-4-1965

K. Sdoudi, Phylogeny and diversity of candida albicans vaginal isolates from three continents, Int. J. Curr. Microbiol. Appl. Sci, vol.3, pp.471-480, 2014.

M. Bougnoux, Multilocus Sequence Typing Reveals Intrafamilial Transmission and Microevolutions of Candida albicans Isolates from the Human Digestive Tract, Journal of Clinical Microbiology, vol.44, issue.5, pp.1810-1820, 2006.
DOI : 10.1128/JCM.44.5.1810-1820.2006

M. Bougnoux, G. Kac, P. Aegerter, C. Enfert, and J. Fagon, Candidemia and candiduria in critically ill patients admitted to intensive care units in France: incidence, molecular diversity, management and outcome, Intensive Care Medicine, vol.36, issue.2, pp.292-299, 2008.
DOI : 10.1007/s00134-007-0865-y

J. H. Shin, Genetic Diversity among Korean Candida albicans Bloodstream Isolates: Assessment by Multilocus Sequence Typing and Restriction Endonuclease Analysis of Genomic DNA by Use of BssHII, Journal of Clinical Microbiology, vol.49, issue.7, pp.2572-2577, 2011.
DOI : 10.1128/JCM.02153-10

C. Angebault, Candida albicans Is Not Always the Preferential Yeast Colonizing Humans: A Study in Wayampi Amerindians, The Journal of Infectious Diseases, vol.208, issue.10, pp.1705-1716, 2013.
DOI : 10.1093/infdis/jit389

H. J. Lo, J. R. Kö-hler, B. Didomenico, D. Loebenberg, A. Cacciapuoti et al., Nonfilamentous C. albicans Mutants Are Avirulent, Cell, vol.90, issue.5, pp.939-949, 1997.
DOI : 10.1016/S0092-8674(00)80358-X

URL : http://doi.org/10.1016/s0092-8674(00)80358-x

F. Botterel, C. Desterke, C. Costa, and S. Bretagne, Analysis of Microsatellite Markers of Candida albicans Used for Rapid Typing, Journal of Clinical Microbiology, vol.39, issue.11, pp.4076-4081, 2001.
DOI : 10.1128/JCM.39.11.4076-4081.2001

P. Sampaio, New Microsatellite Multiplex PCR for Candida albicans Strain Typing Reveals Microevolutionary Changes, Journal of Clinical Microbiology, vol.43, issue.8, pp.3869-3876, 2005.
DOI : 10.1128/JCM.43.8.3869-3876.2005

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1233915

M. Bougnoux, Collaborative Consensus for Optimized Multilocus Sequence Typing of Candida albicans, Journal of Clinical Microbiology, vol.41, issue.11, pp.5265-5266, 2003.
DOI : 10.1128/JCM.41.11.5265-5266.2003

C. J. Nobile, Critical Role of Bcr1-Dependent Adhesins in C. albicans Biofilm Formation In Vitro and In Vivo, PLoS Pathogens, vol.150, issue.7, p.63, 2006.
DOI : 10.1371/journal.ppat.0020063.sg001

J. C. Kapteyn, Altered extent of cross-linking of beta1,6-glucosylated mannoproteins to chitin in Saccharomyces cerevisiae mutants with reduced cell wall beta1,3-glucan content., Journal of Bacteriology, vol.179, issue.20, pp.6279-6284, 1997.
DOI : 10.1128/jb.179.20.6279-6284.1997

W. L. Chaffin, J. L. Lopez-ribot, M. Casanova, D. Gozalbo, and J. P. Martinez, Cell wall and secreted proteins of Candida albicans: identification, function, and expression, Microbiol. Mol. Biol. Rev, vol.62, pp.130-180, 1998.

G. J. Dijkgraaf, J. L. Brown, and H. Bussey, The KNH1 gene of Saccharomyces cerevisiae is a functional homolog of KRE9, Yeast, vol.35, issue.7, pp.683-692, 1996.
DOI : 10.1002/(SICI)1097-0061(19960615)12:7<683::AID-YEA959>3.0.CO;2-8

M. Dubois, K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith, Colorimetric Method for Determination of Sugars and Related Substances, Analytical Chemistry, vol.28, issue.3, pp.350-356, 1956.
DOI : 10.1021/ac60111a017

A. Wartenberg, Microevolution of Candida albicans in Macrophages Restores Filamentation in a Nonfilamentous Mutant, PLoS Genetics, vol.407, issue.10, p.1004824, 2014.
DOI : 10.1371/journal.pgen.1004824.s009

URL : https://hal.archives-ouvertes.fr/pasteur-01518422

H. T. Rupniak, Characteristics of four new human cell lines derived from squamous cell carcinomas of the head and neck, J. Natl. Cancer Inst, vol.75, pp.621-635, 1985.

C. Murciano, Evaluation of the Role of Candida albicans Agglutinin-Like Sequence (Als) Proteins in Human Oral Epithelial Cell Interactions, PLoS ONE, vol.11, issue.3, p.33362, 2012.
DOI : 10.1371/journal.pone.0033362.g006

B. Wachtler, D. Wilson, K. Haedicke, F. Dalle, and B. Hube, From Attachment to Damage: Defined Genes of Candida albicans Mediate Adhesion, Invasion and Damage during Interaction with Oral Epithelial Cells, PLoS ONE, vol.25, issue.Pt 2, p.17046, 2011.
DOI : 10.1371/journal.pone.0017046.s007

N. V. Solis and S. G. Filler, Mouse model of oropharyngeal candidiasis, Nature Protocols, vol.58, issue.4, pp.637-642, 2012.
DOI : 10.1128/IAI.73.11.7190-7197.2005