G. Baillie and L. Douglas, Role of dimorphism in the development of Candida albicans biofilms, Journal of Medical Microbiology, vol.48, issue.7, pp.671-680, 1999.
DOI : 10.1099/00222615-48-7-671

G. Baillie and L. Douglas, Matrix polymers of Candida biofilms and their possible role in biofilm resistance to antifungal agents, Journal of Antimicrobial Chemotherapy, vol.46, issue.3, pp.397-403, 2000.
DOI : 10.1093/jac/46.3.397

M. Batova, V. Dzugasova, and S. Borecka, Molecular and phenotypic analysis of mutations causing anionic phospholipid deficiency in closely related yeast species, Folia Microbiologica, vol.282, issue.1, pp.30-36, 2009.
DOI : 10.1007/s12223-009-0005-x

H. Bernhardt, M. Knoke, and J. Bernhardt, Efficacy of anidulafungin against biofilms of different Candida species in long-term trials of continuous flow cultivation, Mycoses, vol.51, issue.Suppl. 3, pp.821-828, 2011.
DOI : 10.1111/j.1439-0507.2011.02036.x

J. Binkley, M. Arnaud, and D. Inglis, Genome Database: The new homology information page highlights protein similarity and phylogeny, Nucleic Acids Research, vol.42, issue.D1, pp.711-717, 2014.
DOI : 10.1093/nar/gkt1046

J. Blankenship and A. Mitchell, How to build a biofilm: a fungal perspective, Current Opinion in Microbiology, vol.9, issue.6, pp.588-94, 2006.
DOI : 10.1016/j.mib.2006.10.003

M. Bolotin-fukuhara and C. Fairhead, : a deadly companion?, Yeast, vol.9, issue.5, pp.279-88, 2014.
DOI : 10.1002/yea.3019

J. Bonhomme, M. Chauvel, and S. Goyard, Contribution of the glycolytic flux and hypoxia adaptation to efficient biofilm formation by Candida albicans, Molecular Microbiology, vol.153, issue.4, pp.995-1013, 2011.
DOI : 10.1111/j.1365-2958.2011.07626.x

J. Bonhomme and C. Enfert, Candida albicans biofilms: building a heterogeneous, drug-tolerant environment, Current Opinion in Microbiology, vol.16, issue.4, pp.398-403, 2013.
DOI : 10.1016/j.mib.2013.03.007

S. Brunke, K. Seider, and D. Fischer, One Small Step for a Yeast - Microevolution within Macrophages Renders Candida glabrata Hypervirulent Due to a Single Point Mutation, PLoS Pathogens, vol.18, issue.10, p.1004478, 2014.
DOI : 10.1371/journal.ppat.1004478.s014

URL : https://hal.archives-ouvertes.fr/pasteur-01518441

V. Cabral, S. Znaidi, and L. Walker, Targeted Changes of the Cell Wall Proteome Influence Candida albicans Ability to Form Single- and Multi-strain Biofilms, PLoS Pathogens, vol.8, issue.12, p.1004542, 2014.
DOI : 10.1371/journal.ppat.1004542.s016

I. Castano, R. Kaur, and S. Pan, Tn7-Based Genome-Wide Random Insertional Mutagenesis of Candida glabrata, Genome Research, vol.13, issue.5, pp.905-920, 2003.
DOI : 10.1101/gr.848203

I. Castano, S. Pan, and M. Zupancic, Telomere length control and transcriptional regulation of subtelomeric adhesins in Candida glabrata, Molecular Microbiology, vol.11, issue.4, pp.1246-58, 2005.
DOI : 10.1111/j.1365-2958.2004.04465.x

B. Cormack and S. Falkow, Efficient homologous and illegitimate recombination in the opportunistic yeast pathogen Candida glabrata, Genetics, vol.151, pp.979-87, 1999.

B. Cormack, N. Ghori, and S. Falkow, An Adhesin of the Yeast Pathogen Candida glabrata Mediating Adherence to Human Epithelial Cells, Science, vol.285, issue.5427, pp.578-82, 1999.
DOI : 10.1126/science.285.5427.578

M. Costanzo, S. Engel, and E. Wong, genome database provides new regulation data, Nucleic Acids Research, vol.42, issue.D1, pp.717-742, 2014.
DOI : 10.1093/nar/gkt1158

URL : http://doi.org/10.1093/nar/gkt1158

J. Costerton, P. Stewart, and E. Greenberg, Bacterial Biofilms: A Common Cause of Persistent Infections, Science, vol.284, issue.5418, pp.1318-1340, 1999.
DOI : 10.1126/science.284.5418.1318

F. Cottier, R. M. Kurzai, and O. , The bZIP Transcription Factor Rca1p Is a Central Regulator of a Novel CO2 Sensing Pathway in Yeast, PLoS Pathogens, vol.8, issue.1, p.1002485, 2012.
DOI : 10.1371/journal.ppat.1002485.s014

H. Culakova, V. Dzugasova, and J. Perzelova, Mutation of the CgPDR16 gene attenuates azole tolerance and biofilm production in pathogenic Candida glabrata, Yeast, vol.30, pp.403-417, 2013.

R. Darouiche, Treatment of Infections Associated with Surgical Implants, New England Journal of Medicine, vol.350, issue.14, pp.1422-1431, 2004.
DOI : 10.1056/NEJMra035415

D. Davies, Understanding biofilm resistance to antibacterial agents, Nature Reviews Drug Discovery, vol.2, issue.2, pp.114-136, 2003.
DOI : 10.1038/nrd1008

P. De-groot, O. Bader, and A. De-boer, Adhesins in Human Fungal Pathogens: Glue with Plenty of Stick, Eukaryotic Cell, vol.12, issue.4, pp.470-81, 2013.
DOI : 10.1128/EC.00364-12

A. De-las-penas, S. Pan, and I. Castano, Virulence-related surface glycoproteins in the yeast pathogen Candida glabrata are encoded in subtelomeric clusters and subject to RAP1- and SIR-dependent transcriptional silencing, Genes & Development, vol.17, issue.18, pp.2245-58, 2003.
DOI : 10.1101/gad.1121003

C. Enfert, Biofilms and their Role in the Resistance of Pathogenic Candida to Antifungal Agents, Current Drug Targets, vol.7, issue.4, pp.465-70, 2006.
DOI : 10.2174/138945006776359458

J. Desai, A. Mitchell, and D. Andes, Fungal Biofilms, Drug Resistance, and Recurrent Infection, Cold Spring Harbor Perspectives in Medicine, vol.4, issue.10, 2014.
DOI : 10.1101/cshperspect.a019729

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4200207

R. Domergue, I. Castano, D. Las-penas, and A. , Nicotinic Acid Limitation Regulates Silencing of Candida Adhesins During UTI, Science, vol.308, issue.5723, pp.866-70, 2005.
DOI : 10.1126/science.1108640

A. Dongari-bagtzoglou, H. Kashleva, and P. Dwivedi, Characterization of Mucosal Candida albicans Biofilms, PLoS ONE, vol.4, issue.11, p.7967, 2009.
DOI : 10.1371/journal.pone.0007967.g008

R. Donlan and J. Costerton, Biofilms: Survival Mechanisms of Clinically Relevant Microorganisms, Clinical Microbiology Reviews, vol.15, issue.2, pp.167-93, 2002.
DOI : 10.1128/CMR.15.2.167-193.2002

L. Douglas, Candida biofilms and their role in infection, Trends in Microbiology, vol.11, issue.1, pp.30-36, 2003.
DOI : 10.1016/S0966-842X(02)00002-1

B. Dujon, D. Sherman, and G. Fischer, Genome evolution in yeasts, Nature, vol.316, issue.6995, pp.35-44, 2004.
DOI : 10.1093/nar/gkg056

URL : https://hal.archives-ouvertes.fr/hal-00104411

E. Fabre, H. Muller, and P. Therizols, Comparative Genomics in Hemiascomycete Yeasts: Evolution of Sex, Silencing, and Subtelomeres, Molecular Biology and Evolution, vol.22, issue.4, pp.856-73, 2005.
DOI : 10.1093/molbev/msi070

S. Filler, Candida???host cell receptor???ligand interactions, Current Opinion in Microbiology, vol.9, issue.4, pp.333-342, 2006.
DOI : 10.1016/j.mib.2006.06.005

S. Filler and B. Kuhlberg, Deep-seated candidal infections Candida and Candidiasis, pp.341-349, 2002.

J. Finkel and A. Mitchell, Genetic control of Candida albicans biofilm development, Nature Reviews Microbiology, vol.45, issue.2, pp.109-127, 2011.
DOI : 10.1038/nrmicro2475

J. Finkel, W. Xu, and D. Huang, Portrait of Candida albicans Adherence Regulators, PLoS Pathogens, vol.51, issue.2, p.1002525, 2012.
DOI : 10.1371/journal.ppat.1002525.s007

A. Firon and C. Enfert, From genes to function: systematic approaches used to study Candida albicans and Candida glabrata biology and pathogenesis Candida: Comparative and Fucntional Genomics, pp.195-216, 2007.

E. Fox, C. Bui, and J. Nett, biofilm formation, Molecular Microbiology, vol.5, issue.Suppl. 1, pp.1226-1265, 2015.
DOI : 10.1111/mmi.13002

E. Fox, E. Cowley, and C. Nobile, Anaerobic Bacteria Grow within Candida albicans Biofilms and Induce Biofilm Formation in Suspension Cultures, Current Biology, vol.24, issue.20, pp.2411-2417, 2014.
DOI : 10.1016/j.cub.2014.08.057

E. Fox and C. Nobile, A sticky situation, Transcription, vol.181, issue.6, pp.315-337, 2012.
DOI : 10.1128/EC.00111-10

S. Ganguly and A. Mitchell, Mucosal biofilms of Candida albicans, Current Opinion in Microbiology, vol.14, issue.4, pp.380-385, 2011.
DOI : 10.1016/j.mib.2011.06.001

M. Garcia-gimeno and K. Struhl, Aca1 and Aca2, ATF/CREB Activators in Saccharomyces cerevisiae, Are Important for Carbon Source Utilization but Not the Response to Stress, Molecular and Cellular Biology, vol.20, issue.12, pp.4340-4349, 2000.
DOI : 10.1128/MCB.20.12.4340-4349.2000

S. Garcia-sanchez, S. Aubert, and I. Iraqui, Candida albicans Biofilms: a Developmental State Associated With Specific and Stable Gene Expression Patterns, Eukaryotic Cell, vol.3, issue.2, pp.536-581, 2004.
DOI : 10.1128/EC.3.2.536-545.2004

A. Glockner and O. Cornely, unique features and challenges in the clinical management of invasive infections, Mycoses, vol.51, issue.Suppl. 7, pp.445-50, 2015.
DOI : 10.1111/myc.12348

G. Griffioen, P. Branduardi, and A. Ballarini, Nucleocytoplasmic Distribution of Budding Yeast Protein Kinase A Regulatory Subunit Bcy1 Requires Zds1 and Is Regulated by Yak1-Dependent Phosphorylation of Its Targeting Domain, Molecular and Cellular Biology, vol.21, issue.2, pp.511-534, 2001.
DOI : 10.1128/MCB.21.2.511-523.2001

S. Hahn and E. Young, Transcriptional Regulation in Saccharomyces cerevisiae: Transcription Factor Regulation and Function, Mechanisms of Initiation, and Roles of Activators and Coactivators, Genetics, vol.189, issue.3, pp.705-741, 2011.
DOI : 10.1534/genetics.111.127019

R. Hall, D. Sordi, L. Maccallum, and D. , CO2 Acts as a Signalling Molecule in Populations of the Fungal Pathogen Candida albicans, PLoS Pathogens, vol.54, issue.11, p.1001193, 2010.
DOI : 10.1371/journal.ppat.1001193.s007

S. Halliwell, M. Smith, and P. Muston, Heterogeneous Expression of the Virulence-Related Adhesin Epa1 between Individual Cells and Strains of the Pathogen Candida glabrata, Eukaryotic Cell, vol.11, issue.2, pp.141-50, 2012.
DOI : 10.1128/EC.05232-11

L. Hall-stoodley and P. Stoodley, Evolving concepts in biofilm infections, Cellular Microbiology, vol.190, issue.7, pp.1034-1077, 2009.
DOI : 10.1111/j.1462-5822.2009.01323.x

T. Harashima and J. Heitman, The G?? Protein Gpa2 Controls Yeast Differentiation by Interacting with Kelch Repeat Proteins that Mimic G?? Subunits, Molecular Cell, vol.10, issue.1, pp.163-73, 2002.
DOI : 10.1016/S1097-2765(02)00569-5

D. Hnisz, A. Bardet, and C. Nobile, A Histone Deacetylase Adjusts Transcription Kinetics at Coding Sequences during Candida albicans Morphogenesis, PLoS Genetics, vol.234, issue.12, p.1003118, 2012.
DOI : 10.1371/journal.pgen.1003118.s013

K. Honraet, E. Goetghebeur, and H. Nelis, Comparison of three assays for the quantification of Candida biomass in suspension and CDC reactor grown biofilms, Journal of Microbiological Methods, vol.63, issue.3, pp.287-95, 2005.
DOI : 10.1016/j.mimet.2005.03.014

L. Hoyer and . The, The ALS gene family of Candida albicans, Trends in Microbiology, vol.9, issue.4, pp.176-80, 2001.
DOI : 10.1016/S0966-842X(01)01984-9

I. Iraqui, S. Garcia-sanchez, and F. Dromer, The Yak1p kinase controls expression of adhesins and biofilm formation in Candida glabrata in a Sir4p-dependent pathway, Molecular Microbiology, vol.413, issue.4, pp.1259-71, 2005.
DOI : 10.1111/j.1365-2958.2004.04475.x

J. Juarez-cepeda, E. Orta-zavalza, and I. Canas-villamar, The EPA2 adhesin encoding gene is responsive to oxidative stress in the opportunistic fungal pathogen Candida glabrata, Current Genetics, vol.77, issue.4393???4403, pp.529-573, 2015.
DOI : 10.1007/s00294-015-0473-2

R. Kaur, R. Domergue, and M. Zupancic, A yeast by any other name: Candida glabrata and its interaction with the host, Current Opinion in Microbiology, vol.8, issue.4, pp.378-84, 2005.
DOI : 10.1016/j.mib.2005.06.012

T. Klengel, W. Liang, and J. Chaloupka, Fungal Adenylyl Cyclase Integrates CO2 Sensing with cAMP Signaling and Virulence, Current Biology, vol.15, issue.22, pp.2021-2027, 2005.
DOI : 10.1016/j.cub.2005.10.040

URL : http://doi.org/10.1016/j.cub.2005.11.043

E. Kojic and R. Darouiche, Candida Infections of Medical Devices, Clinical Microbiology Reviews, vol.17, issue.2, pp.255-67, 2004.
DOI : 10.1128/CMR.17.2.255-267.2004

E. Kraneveld, J. De-soet, and D. Deng, Identification and Differential Gene Expression of Adhesin-Like Wall Proteins in Candida glabrata Biofilms, Mycopathologia, vol.160, issue.3, pp.415-442, 2011.
DOI : 10.1007/s11046-011-9446-2

S. Kucharikova, B. Neirinck, and N. Sharma, In vivo Candida glabrata biofilm development on foreign bodies in a rat subcutaneous model, Journal of Antimicrobial Chemotherapy, vol.70, issue.3, pp.846-56, 2015.
DOI : 10.1093/jac/dku447

S. Kucharikova, H. Tournu, and K. Lagrou, Detailed comparison of Candida albicans and Candida glabrata biofilms under different conditions and their susceptibility to caspofungin and anidulafungin, Journal of Medical Microbiology, vol.60, issue.9, pp.1261-1270, 2011.
DOI : 10.1099/jmm.0.032037-0

S. Kueng, M. Oppikofer, and S. Gasser, SIR Proteins and the Assembly of Silent Chromatin in Budding Yeast, Annual Review of Genetics, vol.47, issue.1, pp.275-306, 2013.
DOI : 10.1146/annurev-genet-021313-173730

P. Lee, B. Cho, and H. Joo, Yeast Yak1 kinase, a bridge between PKA and stress-responsive transcription factors, Hsf1 and Msn2/Msn4, Molecular Microbiology, vol.274, issue.Part 2, pp.882-95, 2008.
DOI : 10.1111/j.1365-2958.2008.06450.x

P. Lee, S. Paik, and C. Shin, Regulation of yeast Yak1 kinase by PKA and autophosphorylation-dependent 14-3-3 binding, Molecular Microbiology, vol.12, issue.3, pp.633-679, 2011.
DOI : 10.1111/j.1365-2958.2010.07471.x

D. Levin, Regulation of Cell Wall Biogenesis in Saccharomyces cerevisiae: The Cell Wall Integrity Signaling Pathway, Genetics, vol.189, issue.4, pp.1145-75, 2011.
DOI : 10.1534/genetics.111.128264

K. Lewis, Persister cells, dormancy and infectious disease, Nature Reviews Microbiology, vol.71, issue.1, pp.48-56, 2007.
DOI : 10.1128/AAC.00684-06

D. Martin, A. Soulard, and M. Hall, TOR Regulates Ribosomal Protein Gene Expression via PKA and the Forkhead Transcription Factor FHL1, Cell, vol.119, issue.7, pp.969-79, 2004.
DOI : 10.1016/j.cell.2004.11.047

V. Martinez-jimenez, C. Ramirez-zavaleta, and E. Orta-zavalza, Sir3 Polymorphisms in Candida glabrata Clinical Isolates, Mycopathologia, vol.29, issue.10, pp.207-226, 2013.
DOI : 10.1007/s11046-013-9627-2

M. Martins, P. Uppuluri, and D. Thomas, Presence of Extracellular DNA in the Candida albicans Biofilm Matrix and its Contribution to Biofilms, Mycopathologia, vol.172, issue.5, pp.323-354, 2010.
DOI : 10.1007/s11046-009-9264-y

L. Mathe and P. Van-dijck, Recent insights into Candida albicans biofilm resistance mechanisms, Current Genetics, vol.56, issue.8, pp.251-64, 2013.
DOI : 10.1007/s00294-013-0400-3

L. Mermel, B. Farr, and R. Sherertz, Guidelines for the Management of Intravascular Catheter-Related Infections, Clinical Infectious Diseases, vol.32, issue.9, pp.1249-72, 2001.
DOI : 10.1086/320001

H. Moriya, Y. Shimizu-yoshida, and A. Omori, Yak1p, a DYRK family kinase, translocates to the nucleus and phosphorylates yeast Pop2p in response to a glucose signal, Genes & Development, vol.15, issue.10, pp.1217-1245, 2001.
DOI : 10.1101/gad.884001

R. Mundy and B. Cormack, Adhesins after Exposure to Chemical Preservatives, The Journal of Infectious Diseases, vol.199, issue.12, pp.1891-1899, 2009.
DOI : 10.1086/599120

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4019233

J. Nett, L. Lincoln, and K. Marchillo, ?????1,3 Glucan as a Test for Central Venous Catheter Biofilm Infection, The Journal of Infectious Diseases, vol.195, issue.11, pp.1705-1717, 2007.
DOI : 10.1086/517522

J. Nett, L. Lincoln, and K. Marchillo, Putative Role of ??-1,3 Glucans in Candida albicans Biofilm Resistance, Antimicrobial Agents and Chemotherapy, vol.51, issue.2, pp.510-530, 2007.
DOI : 10.1128/AAC.01056-06

J. Nett, K. Crawford, and K. Marchillo, Role of Fks1p and Matrix Glucan in Candida albicans Biofilm Resistance to an Echinocandin, Pyrimidine, and Polyene, Antimicrobial Agents and Chemotherapy, vol.54, issue.8, pp.3505-3513, 2010.
DOI : 10.1128/AAC.00227-10

J. Nett, H. Sanchez, and M. Cain, Biofilm Resistance Due to Drug???Sequestering Matrix Glucan, The Journal of Infectious Diseases, vol.202, issue.1, pp.171-176, 2010.
DOI : 10.1086/651200

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2880631

C. Nobile, D. Andes, and J. Nett, Critical Role of Bcr1-Dependent Adhesins in C. albicans Biofilm Formation In Vitro and In Vivo, PLoS Pathogens, vol.150, issue.7, p.63, 2006.
DOI : 10.1371/journal.ppat.0020063.sg001

C. Nobile, E. Fox, and N. Hartooni, A Histone Deacetylase Complex Mediates Biofilm Dispersal and Drug Resistance in Candida albicans, mBio, vol.5, issue.3, pp.1201-1215, 2014.
DOI : 10.1128/mBio.01201-14

C. Nobile, E. Fox, and J. Nett, A Recently Evolved Transcriptional Network Controls Biofilm Development in Candida albicans, Cell, vol.148, issue.1-2, pp.126-164, 2012.
DOI : 10.1016/j.cell.2011.10.048

C. Nobile and A. Mitchell, Regulation of Cell-Surface Genes and Biofilm Formation by the C. albicans Transcription Factor Bcr1p, Current Biology, vol.15, issue.12, pp.1150-1155, 2005.
DOI : 10.1016/j.cub.2005.05.047

C. Nobile, J. Nett, and A. Hernday, Biofilm Matrix Regulation by Candida albicans Zap1, PLoS Biology, vol.281, issue.6, p.1000133, 2009.
DOI : 10.1371/journal.pbio.1000133.s007

URL : http://doi.org/10.1371/journal.pbio.1000133

C. Nobile, H. Schneider, and J. Nett, Complementary Adhesin Function in C. albicans Biofilm Formation, Current Biology, vol.18, issue.14, pp.1017-1041, 2008.
DOI : 10.1016/j.cub.2008.06.034

I. Ouspenski, E. Brinkley, and S. Br, New yeast genes important for chromosome integrity and segregation identified by dosage effects on genome stability, Nucleic Acids Research, vol.27, issue.15, pp.3001-3009, 1999.
DOI : 10.1093/nar/27.15.3001

A. Paulitsch, B. Willinger, and B. Zsalatz, In-vivo Candida biofilms in scanning electron microscopy, Medical Mycology, vol.47, pp.690-696, 2009.
DOI : 10.1080/13693780802635237

M. Pfaller and D. Diekema, Epidemiology of Invasive Candidiasis: a Persistent Public Health Problem, Clinical Microbiology Reviews, vol.20, issue.1, pp.133-63, 2007.
DOI : 10.1128/CMR.00029-06

G. Ramage, E. Mowat, and B. Jones, Our Current Understanding of Fungal Biofilms, Critical Reviews in Microbiology, vol.100, issue.2, pp.340-55, 2009.
DOI : 10.1099/mic.0.27763-0

G. Ramage, R. Rajendran, and L. Sherry, Fungal Biofilm Resistance, International Journal of Microbiology, vol.27, issue.1, p.528521, 2012.
DOI : 10.1002/pmic.200900611

URL : http://doi.org/10.1155/2012/528521

G. Ramage, V. Walle, K. Wickes, and B. , Standardized Method for In Vitro Antifungal Susceptibility Testing of Candida albicans Biofilms, Antimicrobial Agents and Chemotherapy, vol.45, issue.9, pp.2475-2484, 2001.
DOI : 10.1128/AAC.45.9.2475-2479.2001

G. Ramage and C. Williams, The Clinical Importance of Fungal Biofilms, Adv Appl Microbiol, vol.84, pp.27-83, 2013.
DOI : 10.1016/B978-0-12-407673-0.00002-3

C. Ramirez-zavaleta, G. Salas-delgado, D. Las-penas, and A. , Subtelomeric Silencing of the MTL3 Locus of Candida glabrata Requires yKu70, yKu80, and Rif1 Proteins, Eukaryotic Cell, vol.9, issue.10, pp.1602-1613, 2010.
DOI : 10.1128/EC.00129-10

O. Rando and F. Winston, Chromatin and Transcription in Yeast, Genetics, vol.190, issue.2, pp.351-87, 2012.
DOI : 10.1534/genetics.111.132266

J. Rex, T. Walsh, and J. Sobel, Practice Guidelines for the Treatment of Candidiasis, Clinical Infectious Diseases, vol.30, issue.4, pp.662-78, 2000.
DOI : 10.1086/313749

M. Riera, E. Mogensen, and C. Enfert, New regulators of biofilm development in Candida glabrata, Research in Microbiology, vol.163, issue.4, pp.297-307, 2012.
DOI : 10.1016/j.resmic.2012.02.005

L. Rosas-hernandez, A. Juarez-reyes, and O. Arroyo-helguera, yKu70/yKu80 and Rif1 Regulate Silencing Differentially at Telomeres in Candida glabrata, Eukaryotic Cell, vol.7, issue.12, pp.2168-78, 2008.
DOI : 10.1128/EC.00228-08

T. Rossignol, C. Ding, and A. Guida, Correlation between Biofilm Formation and the Hypoxic Response in Candida parapsilosis, Eukaryotic Cell, vol.8, issue.4, pp.550-559, 2009.
DOI : 10.1128/EC.00350-08

O. Ryan, R. Shapiro, and C. Kurat, Global Gene Deletion Analysis Exploring Yeast Filamentous Growth, Science, vol.20, issue.4, pp.1353-1359, 2012.
DOI : 10.1038/nbt.1832

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

G. Santangelo, Glucose Signaling in Saccharomyces cerevisiae, Microbiology and Molecular Biology Reviews, vol.70, issue.1, pp.253-82, 2006.
DOI : 10.1128/MMBR.70.1.253-282.2006

T. Schwarzmuller, B. Ma, and E. Hiller, Systematic Phenotyping of a Large-Scale Candida glabrata Deletion Collection Reveals Novel Antifungal Tolerance Genes, PLoS Pathogens, vol.39, issue.6, p.1004211, 2014.
DOI : 10.1371/journal.ppat.1004211.s022

M. Seidler, S. Salvenmoser, and F. Muller, In vitro effects of micafungin against Candida biofilms on polystyrene and central venous catheter sections, International Journal of Antimicrobial Agents, vol.28, issue.6, pp.568-73, 2006.
DOI : 10.1016/j.ijantimicag.2006.07.024

C. Seneviratne, W. Silva, and L. Jin, Architectural analysis, viability assessment and growth kinetics of Candida albicans and Candida glabrata biofilms, Archives of Oral Biology, vol.54, issue.11, pp.1052-60, 2009.
DOI : 10.1016/j.archoralbio.2009.08.002

C. Seneviratne, Y. Wang, and L. Jin, Proteomics of drug resistance in Candida glabrata biofilms, PROTEOMICS, vol.153, issue.7, pp.1444-54, 2010.
DOI : 10.1002/pmic.200900611

S. Silva, M. Henriques, and A. Martins, Biofilms of non-Candida albicans Candida species: quantification, structure and matrix composition, Medical Mycology, vol.47, pp.681-690, 2009.
DOI : 10.1080/13693780802549594

S. Silva, M. Negri, and M. Henriques, Adherence and biofilm formation of non-Candida albicans Candida species, Trends in Microbiology, vol.19, issue.5, pp.241-248, 2011.
DOI : 10.1016/j.tim.2011.02.003

S. Silva, M. Negri, and M. Henriques, : biology, epidemiology, pathogenicity and antifungal resistance, FEMS Microbiology Reviews, vol.36, issue.2, pp.288-305, 2012.
DOI : 10.1111/j.1574-6976.2011.00278.x

P. Stewart and M. Franklin, Physiological heterogeneity in biofilms, Nature Reviews Microbiology, vol.167, issue.3, pp.199-210, 2008.
DOI : 10.1038/nrmicro1838

P. Sudbery, Growth of Candida albicans hyphae, Nature Reviews Microbiology, vol.5, issue.10, pp.737-785, 2011.
DOI : 10.1038/nrmicro2636

H. Taff, K. Mitchell, and J. Edward, biofilm drug resistance, Future Microbiology, vol.8, issue.10, pp.1325-1362, 2013.
DOI : 10.2217/fmb.13.101

H. Taff, J. Nett, and R. Zarnowski, A Candida Biofilm-Induced Pathway for Matrix Glucan Delivery: Implications for Drug Resistance, PLoS Pathogens, vol.8, issue.8, p.1002848, 2012.
DOI : 10.1371/journal.ppat.1002848.s001

J. Cate, F. Klis, and T. Pereira-cenci, Molecular and Cellular Mechanisms That Lead to Candida Biofilm Formation, Journal of Dental Research, vol.88, issue.2, pp.105-120, 2009.
DOI : 10.1177/0022034508329273

D. Toulet, C. Debarre, and C. Imbert, Could liposomal amphotericin B (L-AMB) lock solutions be useful to inhibit Candida spp. biofilms on silicone biomaterials?, Journal of Antimicrobial Chemotherapy, vol.67, issue.2, pp.430-432, 2012.
DOI : 10.1093/jac/dkr473

URL : https://hal.archives-ouvertes.fr/hal-00824393

M. Weig, L. Jansch, and U. Gross, Systematic identification in silico of covalently bound cell wall proteins and analysis of protein-polysaccharide linkages of the human pathogen Candida glabrata, Microbiology, vol.150, issue.10, pp.3129-3173, 2004.
DOI : 10.1099/mic.0.27256-0

P. Yanez-carrillo, K. Robledo-marquez, and C. Ramirez-zavaleta, The mating type-like loci of Candida glabrata, Revista Iberoamericana de Micolog??a, vol.31, issue.1, pp.30-34, 2014.
DOI : 10.1016/j.riam.2013.09.016

R. Zarnowski, W. Westler, and G. Lacmbouh, Novel Entries in a Fungal Biofilm Matrix Encyclopedia, mBio, vol.5, issue.4, pp.1333-1347, 2014.
DOI : 10.1128/mBio.01333-14

M. Zupancic, M. Frieman, and D. Smith, Glycan microarray analysis of Candida glabrata adhesin ligand specificity, Molecular Microbiology, vol.177, issue.3, pp.547-59, 2008.
DOI : 10.1093/intimm/dxh246