J. Berman and P. Sudbery, Candida albicans: A molecular revolution built on lessons from budding yeast, Nature Reviews Genetics, vol.178, issue.12, pp.918-930, 2002.
DOI : 10.1038/nrg948

P. Sudbery, Growth of Candida albicans hyphae, Nature Reviews Microbiology, vol.5, issue.10, pp.737-748, 2011.
DOI : 10.1038/nrmicro2636

P. Dohrmann, G. Butler, K. Tamai, S. Dorland, J. Greene et al., Parallel pathways of gene regulation: homologous regulators SWI5 and ACE2 differentially control transcription of HO and chitinase., Genes & Development, vol.6, issue.1, pp.93-104, 1992.
DOI : 10.1101/gad.6.1.93

M. Kelly, D. Maccallum, S. Clancy, F. Odds, A. Brown et al., The Candida albicans CaACE2 gene affects morphogenesis, adherence and virulence, Molecular Microbiology, vol.99, issue.3, pp.969-983, 2004.
DOI : 10.1111/j.1365-2958.2004.04185.x

S. Mulhern, M. Logue, and G. Butler, Candida albicans Transcription Factor Ace2 Regulates Metabolism and Is Required for Filamentation in Hypoxic Conditions, Eukaryotic Cell, vol.5, issue.12, pp.2001-2013, 2006.
DOI : 10.1128/EC.00155-06

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1694816

S. Saputo, Y. Chabrier-rosello, F. Luca, A. Kumar, and D. Krysan, The RAM Network in Pathogenic Fungi, Eukaryotic Cell, vol.11, issue.6, pp.708-717, 2012.
DOI : 10.1128/EC.00044-12

S. Bidlingmaier, E. Weiss, C. Seidel, D. Drubin, and M. Snyder, The Cbk1p Pathway Is Important for Polarized Cell Growth and Cell Separation in Saccharomyces cerevisiae, Molecular and Cellular Biology, vol.21, issue.7, pp.2449-2462, 2001.
DOI : 10.1128/MCB.21.7.2449-2462.2001

A. Colman-lerner, T. Chin, and R. Brent, Yeast Cbk1 and Mob2 Activate Daughter-Specific Genetic Programs to Induce Asymmetric Cell Fates, Cell, vol.107, issue.6, pp.739-750, 2001.
DOI : 10.1016/S0092-8674(01)00596-7

URL : http://doi.org/10.1016/s0092-8674(01)00596-7

B. Nelson, C. Kurischko, J. Horecka, M. Mody, P. Nair et al., RAM: A Conserved Signaling Network That Regulates Ace2p Transcriptional Activity and Polarized Morphogenesis, Molecular Biology of the Cell, vol.14, issue.9, pp.3782-3803, 2003.
DOI : 10.1091/mbc.E03-01-0018

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC196567

W. Racki, A. Becam, F. Nasr, and C. Herbert, Cbk1p, a protein similar to the human myotonic dystrophy kinase, is essential for normal morphogenesis in Saccharomyces cerevisiae, The EMBO Journal, vol.19, issue.17, pp.4524-4532, 2000.
DOI : 10.1093/emboj/19.17.4524

E. Weiss, C. Kurischko, C. Zhang, K. Shokat, D. Drubin et al., Mob2p???Cbk1p kinase complex promotes polarized growth and acts with the mitotic exit network to facilitate daughter cell???specific localization of Ace2p transcription factor, The Journal of Cell Biology, vol.7, issue.5, pp.885-900, 2002.
DOI : 10.1038/35036300

O. 'conallain, C. Doolin, M. Taggart, C. Thornton, F. Butler et al., Regulated nuclear localisation of the yeast transcription factor Ace2p controls expression of chitinase (CTS1) in Saccharomyces cerevisiae, Mol Gen Genet, vol.262, pp.275-222, 1999.

V. Baladrón, S. Ufano, E. Dueñas, A. Martín-cuadrado, F. Del-rey et al., Eng1p, an Endo-1,3-??-Glucanase Localized at the Daughter Side of the Septum, Is Involved in Cell Separation in Saccharomyces cerevisiae, Eukaryotic Cell, vol.1, issue.5, pp.774-786, 2002.
DOI : 10.1128/EC.1.5.774-786.2002

E. Mazanka, A. J. Yeh, B. Charoenpong, P. Lowery, D. Yaffe et al., The NDR/LATS Family Kinase Cbk1 Directly Controls Transcriptional Asymmetry, PLoS Biology, vol.107, issue.8, p.18715118, 2008.
DOI : 10.1371/journal.pbio.0060203.sg005

URL : http://doi.org/10.1371/journal.pbio.0060203

A. Clemente-blanco, A. González-novo, F. Machín, D. Caballero-lima, L. Aragón et al., The Cdc14p phosphatase affects late cell-cycle events and morphogenesis in Candida albicans, Journal of Cell Science, vol.119, issue.6, pp.1130-1143, 2006.
DOI : 10.1242/jcs.02820

Y. Song, S. Cheon, K. Lee, S. Lee, B. Lee et al., Role of the RAM Network in Cell Polarity and Hyphal Morphogenesis in Candida albicans, Molecular Biology of the Cell, vol.19, issue.12, pp.5456-5477, 2008.
DOI : 10.1091/mbc.E08-03-0272

P. Gutiérrez-escribano, A. González-novo, M. Suárez, C. Li, Y. Wang et al., CDK-dependent phosphorylation of Mob2 is essential for hyphal development in Candida albicans, Molecular Biology of the Cell, vol.22, issue.14, pp.2458-2469, 2011.
DOI : 10.1091/mbc.E11-03-0205

A. Bertin and E. Nogales, Septin filament organization in Saccharomyces cerevisiae, Communicative & Integrative Biology, vol.67, issue.5, pp.503-505, 2012.
DOI : 10.1007/s00294-002-0304-0

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3502217

Y. Oh and E. Bi, Septin structure and function in yeast and beyond, Trends in Cell Biology, vol.21, issue.3, pp.141-148, 2011.
DOI : 10.1016/j.tcb.2010.11.006

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3073566

A. Gladfelter, Guides to the final frontier of the cytoskeleton: septins in filamentous fungi, Current Opinion in Microbiology, vol.13, issue.6, pp.720-726, 2010.
DOI : 10.1016/j.mib.2010.09.012

A. González-novo, C. Vázquez-de-aldana, and J. Jiménez, Abstract, Open Life Sciences, vol.4, issue.3, pp.274-289, 2009.
DOI : 10.2478/s11535-009-0032-2

C. Weirich, J. Erzberger, and Y. Barral, The septin family of GTPases: architecture and dynamics, Nature Reviews Molecular Cell Biology, vol.4, issue.6, pp.478-489, 2008.
DOI : 10.1038/nrm2407

K. Fung, L. Dai, and W. Trimble, Cell and Molecular Biology of Septins, Int Rev Cell Mol Biol, vol.310, pp.289-339, 2014.
DOI : 10.1016/B978-0-12-800180-6.00007-4

J. Saarikangas and Y. Barral, The emerging functions of septins in metazoans, EMBO reports, vol.67, issue.11, pp.1118-1126, 2011.
DOI : 10.1016/S0960-9822(00)80115-3

M. Sirajuddin, M. Farkasovsky, F. Hauer, D. Kuhlmann, I. Macara et al., Structural insight into filament formation by mammalian septins, Nature, vol.116, issue.7160, pp.311-315, 2007.
DOI : 10.1038/nature06052

URL : http://hdl.handle.net/11858/00-001M-0000-0014-0643-9

L. Hartwell, Genetic control of the cell division cycle in yeast *1IV. Genes controlling bud emergence and cytokinesis, Experimental Cell Research, vol.69, issue.2, pp.265-276, 1971.
DOI : 10.1016/0014-4827(71)90223-0

A. Mino, K. Tanaka, T. Kamei, M. Umikawa, T. Fujiwara et al., Shs1p: A Novel Member of Septin That Interacts with Spa2p, Involved in Polarized Growth inSaccharomyces cerevisiae, Biochemical and Biophysical Research Communications, vol.251, issue.3, pp.732-736, 1998.
DOI : 10.1006/bbrc.1998.9541

A. Bertin, M. Mcmurray, P. Grob, S. Park, G. Garcia et al., Saccharomyces cerevisiae septins: Supramolecular organization of heterooligomers and the mechanism of filament assembly, Proceedings of the National Academy of Sciences, vol.128, issue.1, pp.8274-8279, 2008.
DOI : 10.1006/jsbi.1999.4174

A. Gladfelter, L. Kozubowski, T. Zyla, and D. Lew, Interplay between septin organization, cell cycle and cell shape in yeast, Journal of Cell Science, vol.118, issue.8, pp.1617-1628, 2005.
DOI : 10.1242/jcs.02286

V. Cid, L. Adamikova, M. Sanchez, M. Molina, and C. Nombela, Cell cycle control of septin ring dynamics in the budding yeast, Microbiology, vol.147, issue.6, pp.1437-1450, 2001.
DOI : 10.1099/00221287-147-6-1437

P. Sudbery, The germ tubes of Candida albicans hyphae and pseudohyphae show different patterns of septin ring localization, Molecular Microbiology, vol.32, issue.1, pp.19-31, 2001.
DOI : 10.1046/j.1365-2958.2001.02459.x

A. Warenda and J. Konopka, Septin Function in Candida albicans Morphogenesis, Molecular Biology of the Cell, vol.13, issue.8, pp.2732-2746, 2002.
DOI : 10.1091/mbc.E02-01-0013

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC117938

A. González-novo, J. Correa-bordes, L. Labrador, M. Sánchez, C. Vázquez-de-aldana et al., Sep7 Is Essential to Modify Septin Ring Dynamics and Inhibit Cell Separation during Candida albicans Hyphal Growth, Molecular Biology of the Cell, vol.19, issue.4, pp.1509-1518, 2008.
DOI : 10.1091/mbc.E07-09-0876

A. Dunkler, A. Walther, C. Specht, and J. Wendland, Candida albicans CHT3 encodes the functional homolog of the Cts1 chitinase of Saccharomyces cerevisiae, Fungal Genetics and Biology, vol.42, issue.11, pp.935-947, 2005.
DOI : 10.1016/j.fgb.2005.08.001

P. Esteban, I. Ríos, R. García, E. Dueñas, J. Plá et al., Characterization of the CaENG1 Gene Encoding an Endo-1,3-??-Glucanase Involved in Cell Separation in Candida albicans, Current Microbiology, vol.158, issue.6, pp.385-392, 2005.
DOI : 10.1007/s00284-005-0066-2

T. Jones, N. Federspiel, H. Chibana, J. Dungan, S. Kalman et al., The diploid genome sequence of Candida albicans, Proceedings of the National Academy of Sciences, vol.175, issue.20, pp.7329-7334, 2004.
DOI : 10.1128/MCB.20.3.971-978.2000

D. Inglis, M. Arnaud, J. Binkley, P. Shah, M. Skrzypek et al., The Candida genome database incorporates multiple Candida species: multispecies search and analysis tools with curated gene and protein information for Candida albicans and Candida glabrata, Nucleic Acids Research, vol.40, issue.D1, pp.667-674, 2012.
DOI : 10.1093/nar/gkr945

T. Goodwin and R. Poulter, Multiple LTR-Retrotransposon Families in the Asexual Yeast Candida albicans, Genome Research, vol.10, issue.2
DOI : 10.1101/gr.10.2.174

A. Wang, P. Raniga, S. Lane, Y. Lu, and H. Liu, Hyphal Chain Formation in Candida albicans: Cdc28-Hgc1 Phosphorylation of Efg1 Represses Cell Separation Genes, Molecular and Cellular Biology, vol.29, issue.16, pp.4406-4416, 2009.
DOI : 10.1128/MCB.01502-08

B. Slutsky, M. Staebell, J. Anderson, L. Risen, M. Pfaller et al., "White-opaque transition": a second high-frequency switching system in Candida albicans., Journal of Bacteriology, vol.169, issue.1, pp.189-197, 1987.
DOI : 10.1128/jb.169.1.189-197.1987

G. Butler, M. Rasmussen, M. Lin, M. Santos, S. Sakthikumar et al., Evolution of pathogenicity and sexual reproduction in eight Candida genomes, Nature, vol.440, issue.7247, pp.657-662, 2009.
DOI : 10.1038/nature08064

H. Si, A. Hernday, M. Hirakawa, A. Johnson, and R. Bennett, Candida albicans White and Opaque Cells Undergo Distinct Programs of Filamentous Growth, PLoS Pathogens, vol.12, issue.3, p.23505370, 2013.
DOI : 10.1371/journal.ppat.1003210.s014

URL : http://doi.org/10.1371/journal.ppat.1003210

H. Crampin, K. Finley, M. Gerami-nejad, H. Court, C. Gale et al., Candida albicans hyphae have a Spitzenkorper that is distinct from the polarisome found in yeast and pseudohyphae, Journal of Cell Science, vol.118, issue.13, pp.2935-2947, 2005.
DOI : 10.1242/jcs.02414

R. Care, J. Trevethick, K. Binley, and P. Sudbery, The MET3 promoter: a new tool for Candida albicans molecular genetics, Molecular Microbiology, vol.9, issue.4, pp.792-798, 1999.
DOI : 10.1002/(SICI)1097-0061(19960915)12:11<1153::AID-YEA16>3.3.CO;2-U

H. Mcbride, Y. Yu, and D. Stillman, Distinct Regions of the Swi5 and Ace2 Transcription Factors Are Required for Specific Gene Activation, Journal of Biological Chemistry, vol.274, issue.30, pp.21029-21036, 1999.
DOI : 10.1074/jbc.274.30.21029

M. Sbia, E. Parnell, Y. Yu, A. Olsen, K. Kretschmann et al., Regulation of the Yeast Ace2 Transcription Factor during the Cell Cycle, Journal of Biological Chemistry, vol.11, issue.17, pp.11135-11145, 2008.
DOI : 10.1091/mbc.11.3.915

J. Brace, J. Hsu, and E. Weiss, Mitotic Exit Control of the Saccharomyces cerevisiae Ndr/LATS Kinase Cbk1 Regulates Daughter Cell Separation after Cytokinesis, Molecular and Cellular Biology, vol.31, issue.4, pp.721-735, 2011.
DOI : 10.1128/MCB.00403-10

M. Alonso-núñez, H. An, A. Martín-cuadrado, S. Mehta, C. Petit et al., Ace2p Controls the Expression of Genes Required for Cell Separation in Schizosaccharomyces pombe, Molecular Biology of the Cell, vol.16, issue.4, pp.2003-2017, 2005.
DOI : 10.1091/mbc.E04-06-0442

P. Spellman, G. Sherlock, M. Zhang, V. Iyer, K. Anders et al., Comprehensive Identification of Cell Cycle-regulated Genes of the Yeast Saccharomyces cerevisiae by Microarray Hybridization, Molecular Biology of the Cell, vol.9, issue.12, pp.3273-3297, 1998.
DOI : 10.1091/mbc.9.12.3273

A. Martín-cuadrado, E. Dueñas, M. Sipiczki, C. Vázquez-de-aldana, and F. Del-rey, The endo-beta-1,3-glucanase eng1p is required for dissolution of the primary septum during cell separation in Schizosaccharomyces pombe, Journal of Cell Science, vol.116, issue.9, pp.1689-1698, 2003.
DOI : 10.1242/jcs.00377

C. Li, R. Lee, Y. Wang, X. Zheng, and Y. Wang, Candida albicans hyphal morphogenesis occurs in Sec3p-independent and Sec3p-dependent phases separated by septin ring formation, Journal of Cell Science, vol.120, issue.11, pp.1898-1907, 2007.
DOI : 10.1242/jcs.002931

P. Sudbery, Morphogenesis of a Human Fungal Pathogen Requires Septin Phosphorylation, Developmental Cell, vol.13, issue.3, pp.315-316, 2007.
DOI : 10.1016/j.devcel.2007.08.009

G. Garcia, A. Bertin, Z. Li, Y. Song, M. Mcmurray et al., Subunit-dependent modulation of septin assembly: Budding yeast septin Shs1 promotes ring and gauze formation, The Journal of Cell Biology, vol.162, issue.6, pp.993-1004, 2011.
DOI : 10.1016/j.cub.2007.08.042

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3241732

F. Odds, M. Bougnoux, D. Shaw, J. Bain, A. Davidson et al., Molecular Phylogenetics of Candida albicans, Eukaryotic Cell, vol.6, issue.6, pp.1041-1052, 2007.
DOI : 10.1128/EC.00041-07

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1951527

B. Mcmanus and D. Coleman, Molecular epidemiology, phylogeny and evolution of Candida albicans, Infection, Genetics and Evolution, vol.21, pp.166-178, 2014.
DOI : 10.1016/j.meegid.2013.11.008

J. Schmid, S. Herd, P. Hunter, R. Cannon, M. Yasin et al., Evidence for a general-purpose genotype in Candida albicans , highly prevalent in multiple geographical regions, patient types and types of infection, Microbiology, vol.145, issue.9, pp.2405-2413, 1999.
DOI : 10.1099/00221287-145-9-2405

A. Forche, P. Magee, A. Selmecki, J. Berman, and G. May, Evolution in Candida albicans Populations During a Single Passage Through a Mouse Host, Genetics, vol.182, issue.3, pp.799-811, 2009.
DOI : 10.1534/genetics.109.103325

A. Forche, D. Abbey, T. Pisithkul, M. Weinzierl, T. Ringstrom et al., Stress Alters Rates and Types of Loss of Heterozygosity in Candida albicans, mBio, vol.2, issue.4, pp.129-00111, 2011.
DOI : 10.1128/mBio.00129-11

S. Gola, R. Martin, A. Walther, A. Dunkler, and J. Wendland, : rapid and efficient gene targeting using 100 bp of flanking homology region, Yeast, vol.181, issue.16, pp.1339-1347, 2003.
DOI : 10.1002/yea.1044

Y. Schaub, A. Dunkler, A. Walther, and J. Wendland, New pFA-cassettes for PCR-based gene manipulation inCandida albicans, Journal of Basic Microbiology, vol.36, issue.5, pp.416-429, 2006.
DOI : 10.1002/jobm.200510133

P. Reijnst, A. Walther, and J. Wendland, Dual-colour fluorescence microscopy using yEmCherry-/GFP-tagging of eisosome components Pil1 and Lsp1 in Candida albicans, Yeast, vol.9, issue.4, pp.331-338, 2011.
DOI : 10.1002/yea.1841

B. Enloe, A. Diamond, and A. Mitchell, A Single-Transformation Gene Function Test in Diploid Candida albicans, Journal of Bacteriology, vol.182, issue.20, pp.5730-5736, 2000.
DOI : 10.1128/JB.182.20.5730-5736.2000

P. Gutiérrez-escribano, U. Zeidler, M. Suárez, S. Bachellier-bassi, A. Clemente-blanco et al., The NDR/LATS Kinase Cbk1 Controls the Activity of the Transcriptional Regulator Bcr1 during Biofilm Formation in Candida albicans, PLoS Pathogens, vol.66, issue.5, p.22589718, 2012.
DOI : 10.1371/journal.ppat.1002683.t002