D. Weinberger, E. Torrey, A. Neophytides, and R. Wyatt, Lateral Cerebral Ventricular Enlargement in Chronic Schizophrenia, Archives of General Psychiatry, vol.36, issue.7, pp.735-739, 1979.
DOI : 10.1001/archpsyc.1979.01780070013001

X. Duan, Disrupted-In-Schizophrenia 1 Regulates Integration of Newly Generated Neurons in the Adult Brain, Cell, vol.130, issue.6, pp.1146-1158, 2007.
DOI : 10.1016/j.cell.2007.07.010

N. Brandon and A. Sawa, Linking neurodevelopmental and synaptic theories of mental illness through DISC1, Nature Reviews Neuroscience, vol.25, issue.12, pp.707-722
DOI : 10.1038/nrn3120

M. Owen, N. Williams, O. Donovan, and M. , The molecular genetics of schizophrenia: new findings promise new insights, Molecular Psychiatry, vol.9, issue.1, pp.14-27, 2004.
DOI : 10.1038/sj.mp.4001444

B. Franke, The genetics of attention deficit/hyperactivity disorder in adults, a review, Molecular Psychiatry, vol.153, issue.10, pp.960-987
DOI : 10.1176/appi.ajp.2010.09091335

N. Sachs, A. Sawa, S. Holmes, C. Ross, L. Delisi et al., 2005 A frameshift mutation in Disrupted in Schizophrenia 1 in an American family with schizophrenia and schizoaffective disorder

J. Millar, Disruption of two novel genes by a translocation co-segregating with schizophrenia, Human Molecular Genetics, vol.9, issue.9, pp.1415-1423, 2000.
DOI : 10.1093/hmg/9.9.1415

A. Kamiya, DISC1-NDEL1/NUDEL protein interaction, an essential component for neurite outgrowth, is modulated by genetic variations of DISC1, Human Molecular Genetics, vol.15, issue.22, pp.3313-3323, 2006.
DOI : 10.1093/hmg/ddl407

Y. Ozeki, Disrupted-in-Schizophrenia-1 (DISC-1): Mutant truncation prevents binding to NudE-like (NUDEL) and inhibits neurite outgrowth, Proceedings of the National Academy of Sciences, vol.22, issue.1, p.160328, 2003.
DOI : 10.1038/8820

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC140954

S. Taya, DISC1 Regulates the Transport of the NUDEL/LIS1/14-3-3?? Complex through Kinesin-1, Journal of Neuroscience, vol.27, issue.1, pp.15-26, 2006.
DOI : 10.1523/JNEUROSCI.3826-06.2006

S. Prusiner, Neurodegenerative Diseases and Prions, New England Journal of Medicine, vol.344, issue.20, pp.1516-1526, 2001.
DOI : 10.1056/NEJM200105173442006

S. Leliveld, V. Bader, P. Hendriks, I. Prikulis, G. Sajnani et al., Insolubility of Disrupted-in-Schizophrenia 1 Disrupts Oligomer-Dependent Interactions with Nuclear Distribution Element 1 and Is Associated with Sporadic Mental Disease, Journal of Neuroscience, vol.28, issue.15, pp.3839-3845, 2008.
DOI : 10.1523/JNEUROSCI.5389-07.2008

P. Ottis, V. Bader, S. Trossbach, H. Kretzschmar, M. Michel et al., Convergence of Two Independent Mental Disease Genes on the Protein Level: Recruitment of Dysbindin to Cell-Invasive Disrupted-In-Schizophrenia 1 Aggresomes, Biological Psychiatry, vol.70, issue.7, pp.604-610
DOI : 10.1016/j.biopsych.2011.03.027

V. Bader, P. Ottis, M. Pum, J. Huston, and C. Korth, 2012 Generation, purification, and characterization of cellinvasive DISC1 protein species, J. Vis. Exp, vol.66, pp.4132-4142

S. Trossbach, Misassembly of full-length Disrupted-in-Schizophrenia 1 protein is linked to altered dopamine homeostasis and behavioral deficits, Molecular Psychiatry, vol.15, issue.11, pp.1561-1572
DOI : 10.1038/emboj.2011.400

C. Korth, Aggregated proteins in schizophrenia and other chronic mental diseases, Prion, vol.6, issue.2, pp.134-141, 2012.
DOI : 10.1073/pnas.0909284107

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3366354

J. Guo and V. Lee, Cell-to-cell transmission of pathogenic proteins in neurodegenerative diseases, Nature Medicine, vol.62, issue.2, pp.130-138
DOI : 10.1016/j.celrep.2013.06.007

P. Brundin, R. Melki, and R. Kopito, Prion-like transmission of protein aggregates in neurodegenerative diseases, Nature Reviews Molecular Cell Biology, vol.4, issue.4, pp.301-307, 2873.
DOI : 10.1038/nrm2873

URL : https://hal.archives-ouvertes.fr/hal-01183206

S. Lee, P. Desplats, C. Sigurdson, I. Tsigelny, and E. Masliah, Cell-to-cell transmission of non-prion protein aggregates, Nature Reviews Neurology, vol.83, issue.12, pp.702-706
DOI : 10.1038/nrneurol.2010.145

M. Costanzo and C. Zurzolo, The cell biology of prion-like spread of protein aggregates: mechanisms and implication in neurodegeneration, Biochemical Journal, vol.452, issue.1, pp.1-17
DOI : 10.1042/BJ20121898

URL : https://hal.archives-ouvertes.fr/pasteur-00874678

L. Walker and M. Jucker, Neurodegenerative Diseases: Expanding the Prion Concept, Annual Review of Neuroscience, vol.38, issue.1, pp.87-103
DOI : 10.1146/annurev-neuro-071714-033828

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4803040

J. Shorter and S. Lindquist, Prions as adaptive conduits of memory and inheritance, Nature Reviews Genetics, vol.5, issue.6, 2005.
DOI : 10.1016/j.cell.2005.04.002

S. Garrity, V. Sivanathan, J. Dong, S. Lindquist, and A. Hochschild, 2010 Conversion of a yeast prion protein to an infectious form in bacteria, Proc. Natl Acad. Sci. USA 107, pp.596-606

P. Harrison, The neuropathology of schizophrenia: A critical review of the data and their interpretation, Brain, vol.122, issue.4, pp.593-624, 1999.
DOI : 10.1093/brain/122.4.593

A. Rustom, R. Saffrich, I. Markovic, P. Walther, and H. Gerdes, Nanotubular Highways for Intercellular Organelle Transport, Science, vol.303, issue.5660, 2004.
DOI : 10.1126/science.1093133

D. Wittig, X. Wang, C. Walter, H. Gerdes, R. Funk et al., Multi-Level Communication of Human Retinal Pigment Epithelial Cells via Tunneling Nanotubes, PLoS ONE, vol.57, issue.3, p.33195
DOI : 10.1371/journal.pone.0033195.s002

N. Rainy, D. Chetrit, V. Rouger, H. Vernitsky, O. Rechavi et al., H-Ras transfers from B to T cells via tunneling nanotubes, Cell Death and Disease, vol.178, issue.7, p.726
DOI : 10.1128/MCB.05570-11

URL : http://doi.org/10.1038/cddis.2013.245

M. Costanzo, S. Abounit, L. Marzo, A. Danckaert, Z. Chamoun et al., Transfer of polyglutamine aggregates in neuronal cells occurs in tunneling nanotubes, Journal of Cell Science, vol.126, issue.16, pp.3678-3685
DOI : 10.1242/jcs.126086

URL : https://hal.archives-ouvertes.fr/pasteur-00874692

K. Gousset, Prions hijack tunnelling nanotubes for intercellular spread, Nature Cell Biology, vol.177, issue.3, pp.328-336, 1841.
DOI : 10.1038/nprot.2006.356

URL : https://hal.archives-ouvertes.fr/pasteur-00368712

X. Sun, Y. Wang, J. Zhang, J. Tu, X. Wang et al., Tunneling-nanotube direction determination in neurons and astrocytes, Cell Death and Disease, vol.2, issue.12, p.438
DOI : 10.1007/BF00656997

URL : http://doi.org/10.1038/cddis.2012.177

L. Marzo, K. Gousset, and C. Zurzolo, 2012 Multifaceted roles of tunneling nanotubes in intercellular communication, Front. Physiol

S. Abounit and C. Zurzolo, 2012 Wiring through tunneling nanotubes?from electrical signals to organelle transfer, J. Cell Sci, vol.125
DOI : 10.1242/jcs.083279

URL : https://hal-pasteur.archives-ouvertes.fr/pasteur-00716392/file/1089.full.pdf

B. Onfelt, Structurally Distinct Membrane Nanotubes between Human Macrophages Support Long-Distance Vesicular Traffic or Surfing of Bacteria, The Journal of Immunology, vol.177, issue.12, pp.8476-8483, 2006.
DOI : 10.4049/jimmunol.177.12.8476

S. Sowinski, Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission, Nature Cell Biology, vol.8, issue.2, pp.211-219, 2008.
DOI : 10.1074/jbc.C400046200

Y. Wang, J. Cui, X. Sun, and Y. Zhang, Tunneling-nanotube development in astrocytes depends on p53 activation, Cell Death and Differentiation, vol.23, issue.4, pp.732-742, 2011.
DOI : 10.1038/cdd.2010.147

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3131904

S. Abounit, J. Wu, K. Duff, G. Victoria, and C. Zurzolo, Tunneling nanotubes: A possible highway in the spreading of tau and other prion-like proteins in neurodegenerative diseases, Prion, vol.528, issue.7580, pp.344-351, 2016.
DOI : 10.1182/blood-2015-03-634238

K. Gousset and C. Zurzolo, Tunnelling nanotubes, Prion, vol.121, issue.2, pp.94-98, 2009.
DOI : 10.1371/journal.ppat.1000426

URL : https://hal.archives-ouvertes.fr/pasteur-00406148

A. Aguzzi and A. Lakkaraju, Cell Biology of Prions and Prionoids: A Status Report, Trends in Cell Biology, vol.26, issue.1, pp.40-51
DOI : 10.1016/j.tcb.2015.08.007

T. Atkin, N. Brandon, and J. Kittler, Disrupted in Schizophrenia 1 forms pathological aggresomes that disrupt its function in intracellular transport, Human Molecular Genetics, vol.21, issue.9, pp.2017-2028
DOI : 10.1093/hmg/dds018

P. Muchowski, K. Ning, D. Souza-schorey, C. Fields, and S. , Requirement of an intact microtubule cytoskeleton for aggregation and inclusion body formation by a mutant huntingtin fragment, Proc. Natl Acad. Sci. USA 99, pp.727-732, 2002.
DOI : 10.1016/S0304-3940(00)00956-3

T. Hasegawa, M. Matsuzaki, A. Takeda, A. Kikuchi, H. Akita et al., Accelerated $alpha;-synuclein aggregation after differentiation of SH-SY5Y neuroblastoma cells, Brain Research, vol.1013, pp.51-59, 2004.
DOI : 10.1016/S0006-8993(04)00544-X

C. Soto, Unfolding the role of protein misfolding in neurodegenerative diseases, Nature Reviews Neuroscience, vol.495, issue.1, pp.49-60, 2003.
DOI : 10.1038/nrn1007

M. Tanaka, P. Chien, N. Naber, R. Cooke, and J. Weissman, Conformational variations in an infectious protein determine prion strain differences, Nature, vol.428, issue.6980, pp.323-328, 2004.
DOI : 10.1038/nature02392

J. Hofmann, 2013 Cell-to-cell propagation of infectious cytosolic protein aggregates, Proc. Natl Acad. Sci. USA, pp.5951-5956, 1217321110.

B. Feng, B. Toyama, H. Wille, D. Colby, S. Collins et al., Small-molecule aggregates inhibit amyloid polymerization, Nature Chemical Biology, vol.4, issue.3, pp.197-199, 2008.
DOI : 10.1016/S0076-6879(06)12012-1

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2730835

D. Soares, B. Carlyle, N. Bradshaw, and D. Porteous, DISC1: Structure, Function, and Therapeutic Potential for Major Mental Illness, ACS Chemical Neuroscience, vol.2, issue.11, pp.609-632, 2011.
DOI : 10.1021/cn200062k

URL : http://doi.org/10.1021/cn200062k

S. Leliveld, Oligomer Assembly of the C-Terminal DISC1 Domain (640???854) Is Controlled by Self-Association Motifs and Disease-Associated Polymorphism S704C, Biochemistry, vol.48, issue.32, pp.7746-7755, 2009.
DOI : 10.1021/bi900901e

A. Yerabham, 2017 A Structural Organization for Disrupted in Schizophrenia 1, Identified by Highrsob, royalsocietypublishing.org Open Biol, vol.7, p.160328

F. Langer, Y. Eisele, S. Fritschi, M. Staufenbiel, L. Walker et al., Soluble Abeta seeds are potent inducers of cerebral beta-amyloid deposition, J. Neurosci, vol.31, issue.14, pp.488-502, 2011.
DOI : 10.1523/jneurosci.3088-11.2011

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3229270

K. Gousset, L. Marzo, P. Commere, and C. Zurzolo, Myo10 is a key regulator of TNT formation in neuronal cells, Journal of Cell Science, vol.126, issue.19, pp.4424-4435
DOI : 10.1242/jcs.129239

URL : https://hal.archives-ouvertes.fr/pasteur-00874699

G. Victoria, A. Arkhipenko, S. Zhu, S. Syan, and C. Zurzolo, Astrocyte-to-neuron intercellular prion transfer is mediated by cell-cell contact, Scientific Reports, vol.107, issue.1, pp.20762-20772, 20762.
DOI : 10.1073/pnas.1006785107

URL : https://hal.archives-ouvertes.fr/pasteur-01500707

B. Frost, R. Jacks, and M. Diamond, Propagation of Tau Misfolding from the Outside to the Inside of a Cell, Journal of Biological Chemistry, vol.284, issue.19, pp.845-857, 2009.
DOI : 10.1074/jbc.M808759200

C. Hansen, ??-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells, Journal of Clinical Investigation, vol.121, issue.2, pp.715-725
DOI : 10.1172/JCI43366DS1

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3026723

M. Da-luz, I. Peres, T. Santos, V. Martins, M. Icimoto et al., 2015 Dopamine induces the accumulation of insoluble prion protein and affects autophagic flux, Front. Cell. Neurosci

Y. Yoshimoto, K. Nakaso, and K. Nakashima, L-dopa and dopamine enhance the formation of aggregates under proteasome inhibition in PC12 cells, FEBS Letters, vol.1619, issue.5, pp.1197-1202
DOI : 10.1016/j.febslet.2004.12.091

A. Abi-dargham, Increased baseline occupancy of D2 receptors by dopamine in schizophrenia, Proc. Natl Acad. Sci. USA 97, pp.8104-8109, 2000.
DOI : 10.1177/026988119901300405

J. Pasuit, Z. Li, and E. Kuzhikandathil, Multi-modal regulation of endogenous D1 dopamine receptor expression and function in the CAD catecholaminergic cell line, Journal of Neurochemistry, vol.50, issue.6, pp.1508-1519, 2004.
DOI : 10.1111/j.1471-4159.2004.02450.x

J. Greenwald and R. Riek, Biology of Amyloid: Structure, Function, and??Regulation, Structure, vol.18, issue.10, pp.1244-1260, 2010.
DOI : 10.1016/j.str.2010.08.009